Mild administration for perovskite light-emitting diodes

[ad_1]

  • Tan, Z.-Ok. et al. Brilliant light-emitting diodes based mostly on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Cho, H. et al. Overcoming the electroluminescence effectivity limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, B. et al. Excessive-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chiba, T. et al. Anion-exchange pink perovskite quantum dots with ammonium iodine salts for extremely environment friendly light-emitting units. Nat. Photon. 12, 681–687 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Ok. et al. Perovskite light-emitting diodes with exterior quantum effectivity exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Perovskite light-emitting diodes based mostly on spontaneously shaped submicrometre-scale constructions. Nature 562, 249–253 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. S. et al. Extremely-bright, environment friendly and secure perovskite light-emitting diodes. Nature 611, 688–694 (2022). (2022).

    Article 
    CAS 

    Google Scholar
     

  • Han, T. H. et al. A roadmap for the commercialization of perovskite mild emitters. Nat. Rev. Mater. 7, 757–777 (2022).

    Article 

    Google Scholar
     

  • Liu, S. et al. Manipulating environment friendly mild emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv. 5, eaav9445 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cho, C. et al. The position of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Stranks, S. D. et al. The physics of sunshine emission in halide perovskite units. Adv. Mater. 31, 1803336 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, X. & Tan, Z. Ok. Giant-area near-infrared perovskite light-emitting diodes. Nat. Photon. 14, 215–218 (2019).

    Article 

    Google Scholar
     

  • Xiao, Z. et al. Environment friendly perovskite light-emitting diodes that includes nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, B. et al. Environment friendly light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3, 704–710 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, N. et al. Perovskite light-emitting diodes based mostly on solution-processed self-organized a number of quantum wells. Nat. Photon. 10, 699–704 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, M. et al. Perovskite power funnels for environment friendly light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Lowering the influence of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 336 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hutter, E. M. et al. Direct–oblique character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater. 16, 115–120 (2016).

    Article 

    Google Scholar
     

  • Li, P. et al. A number of-quantum-well perovskite for hole-transport-layer-free light-emitting diodes. Chin. Chem. Lett. 33, 1017–1020 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ban, M. et al. Resolution-processed perovskite mild emitting diodes with effectivity exceeding 15% by additive-controlled nanostructure tailoring. Nat. Commun. 9, 3892 (2018).

    Article 

    Google Scholar
     

  • Zou, W. et al. Minimising effectivity roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018).

    Article 

    Google Scholar
     

  • Zhang, Q. et al. Mild out-coupling administration in perovskite LEDs—what can we study from the previous? Adv. Funct. Mater. 30, 2002570 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shen, Y. et al. Excessive-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Adv. Mater. 31, 1901517 (2019).

    Article 

    Google Scholar
     

  • Zhao, L., Lee, Ok. M., Roh, Ok., Khan, S. U. Z. & Rand, B. P. Improved outcoupling effectivity and stability of perovskite light-emitting diodes utilizing skinny emitting layers. Adv. Mater. 31, 1805836 (2019).

    Article 

    Google Scholar
     

  • Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and lightweight out-coupling. Nat. Commun. 7, 13941 (2016).

    Article 
    CAS 

    Google Scholar
     

  • He, S. et al. Tailoring the refractive index and floor defects of CsPbBr3 quantum dots through alkyl cation-engineering for environment friendly perovskite light-emitting diodes. Chem. Eng. J. 425, 130678 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shi, X. B. et al. Optical power losses in natural–inorganic hybrid perovskite light-emitting diodes. Adv. Choose. Mater. 6, 1800667 (2018).

    Article 

    Google Scholar
     

  • Wan, Q. et al. Ultrathin light-emitting diodes with exterior effectivity over 26% based mostly on resurfaced perovskite nanocrystals. ACS Power Lett. 13, 927–934 (2023).

    Article 

    Google Scholar
     

  • Zou, C. & Lin, L. Y. Impact of emitter orientation on the outcoupling effectivity of perovskite light-emitting diodes. Choose. Lett. 45, 4786–4789 (2020).

    Article 

    Google Scholar
     

  • Werner, J. et al. Advanced refractive indices of cesium-formamidinium-based mixed-halide perovskites with optical band gaps from 1.5 to 1.8 eV. ACS Power Lett. 3, 742–747 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Perovskite light-emitting diodes with EQE exceeding 28% by a synergetic dual-additive technique for defect passivation and nanostructure regulation. Adv. Mater. 33, 2103268 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bowman, A. R., Anaya, M., Greenham, N. C. & Stranks, S. D. Quantifying photon recycling in photo voltaic cells and light-emitting diodes: absorption and emission are at all times key. Phys. Rev. Lett. 125, 067401 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, J., Ma, P., Chen, W. & Xiao, Z. Overcoming outcoupling restrict in perovskite light-emitting diodes with enhanced photon recycling. Nano Lett. 21, 8426–8432 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fieramosca, A. et al. Tunable Out-of-plane excitons in 2D single-crystal perovskites. ACS Photon. 5, 4179–4185 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Walters, G. et al. Directional mild emission from layered metallic halide perovskite crystals. J. Phys. Chem. Lett. 11, 3458–3465 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jurow, M. J. et al. Tunable anisotropic photon emission from self-organized CsPbBr3 perovskite nanocrystals. Nano Lett. 17, 4534–4540 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jurow, M. J. et al. Manipulating the transition dipole second of CsPbBr3 perovskite nanocrystals for superior optical properties. Nano Lett. 19, 2489–2496 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Cui, J. et al. Environment friendly light-emitting diodes based mostly on oriented perovskite nanoplatelets. Sci. Adv. 7, eabg8458 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Morgenstern, T. et al. Elucidating the efficiency limits of perovskite nanocrystal mild emitting diodes. J. Lumin. 220, 116939 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Proppe, A. H. et al. Transition dipole moments of n = 1, 2, and three perovskite quantum wells from the optical stark impact and many-body perturbation principle. J. Phys. Chem. Lett. 11, 716–723 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cho, C. & Greenham, N. C. Computational examine of dipole radiation in re-absorbing perovskite semiconductors for optoelectronics. Adv. Sci. 8, 2003559 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Environment friendly blue light-emitting diodes based mostly on quantum-confined bromide perovskite nanostructures. Nat. Photon. 13, 760–764 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ziebarth, J. M., Saafir, A. Ok., Fan, S. & McGehee, M. D. Extracting mild from polymer light-emitting diodes utilizing stamped bragg gratings. Adv. Funct. Mater. 14, 451–456 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Solar, Y. & Forrest, S. R. Enhanced mild out-coupling of natural light-emitting units utilizing embedded low-index grids. Nat. Photon. 2, 483–487 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Environment friendly metallic halide perovskite light-emitting diodes with considerably improved mild extraction on nanophotonic substrates. Nat. Commun. 10, 727 (2019).

    Article 

    Google Scholar
     

  • Jeon, S. et al. Perovskite light-emitting diodes with improved outcoupling utilizing a high-index distinction nanoarray. Small 15, 1900135 (2019).

    Article 

    Google Scholar
     

  • Shen, Y. et al. Interfacial nucleation seeding for electroluminescent manipulation in blue perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2103870 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mehta, D. S., Saxena, Ok., Rai, V. Ok., Srivastava, R. & Kamalasanan, M. N. Enhancement of sunshine out-coupling effectivity of natural light-emitting units by anti-reflection coating approach. In 2007 Worldwide Workshop on Physics of Semiconductor Units 628–629 (IEEE, 2007).

  • Meng, S. S., Li, Y. Q. & Tang, J. X. Theoretical perspective to mild outcoupling and administration in perovskite light-emitting diodes. Org. Electron. 61, 351–358 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kim, H. P. et al. Excessive-efficiency, blue, inexperienced, and near-infrared light-emitting diodes based mostly on triple cation perovskite. Adv. Choose. Mater. 5, 1600920 (2017).

    Article 

    Google Scholar
     

  • Fakharuddin, A. et al. Decreased effectivity roll-off and improved stability of combined 2D/3D perovskite mild emitting diodes by balancing cost injection. Adv. Funct. Mater. 29, 1904101 (2019).

    Article 

    Google Scholar
     

  • Weidlich, A. & Wilkie, A. Anomalous dispersion in predictive rendering. Comput. Graph. Discussion board 28, 1065–1072 (2009).

    Article 

    Google Scholar
     

  • Usha, Ok. S., Sivakumar, R. & Sanjeeviraja, C. Optical constants and dispersion power parameters of NiO skinny movies ready by radio frequency magnetron sputtering approach. J. Appl. Phys. 114, 123501 (2013).

    Article 

    Google Scholar
     

  • Fang, C. Y. et al. Nanoparticle stacks with graded refractive indices improve the omnidirectional mild harvesting of photo voltaic cells and the sunshine extraction of light-emitting diodes. Adv. Funct. Mater. 23, 1412–1421 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Schubert, E. F. et al. Extremely environment friendly light-emitting diodes with microcavities. Science 265, 943–945 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Purcell, E. M. in Confined Electrons and Photons (eds Burstein, E. & Weisbuch, C.) 839–839 (Springer, 1995).

  • Lüssem, B., Leo, Ok., Thomschke, M. & Hofmann, S. High-emitting natural light-emitting diodes. Choose. Categorical 19, A1250–A1264 (2011).

    Article 

    Google Scholar
     

  • Miao, Y. et al. Microcavity top-emission perovskite light-emitting diodes. Mild Sci. Appl. 9, 89 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gu, L., Wen, Ok., Peng, Q., Huang, W. & Wang, J. Floor-plasmon-enhanced perovskite light-emitting diodes. Small 16, 2001861 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Barnes, W. L., Dereux, A. & Ebbesen, T. W. Floor plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Xu, L. et al. Floor plasmon enhanced luminescence from organic-inorganic hybrid perovskites. Appl. Phys. Lett. 110, 233113 (2017).

    Article 

    Google Scholar
     

  • Cai, C. et al. Photoluminescence enhancement in vast spectral vary excitation in CsPbBr3 nanocrystal/Ag nanostructure through floor plasmon coupling. Choose. Lett. 44, 658–661 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, D. et al. Plasmonic photonic crystals induced two-order fluorescence enhancement of blue perovskite nanocrystals and its utility for high-performance versatile ultraviolet photodetectors. Adv. Funct. Mater. 28, 1804429 (2018).

    Article 

    Google Scholar
     

  • Zhang, Ok. et al. Silver nanoparticles enhanced luminescence and stability of CsPbBr3 perovskite quantum dots in borosilicate glass. J. Am. Ceram. Soc. 103, 2463–2470 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bayles, A. et al. Localized floor plasmon results on the photophysics of perovskite skinny movies embedding metallic nanoparticles. J. Mater. Chem. C 8, 916–921 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Plasmonic perovskite light-emitting diodes based mostly on the Ag-CsPbBr3 system. ACS Appl. Mater. Interf. 9, 4926–4931 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cai, C., Bi, G., Wu, H. & Zhai, J. Electron power switch impact in Au NS/CH3NH3PbI3-xClx heterostructures through localized floor plasmon resonance coupling. Choose. Lett. 41, 4297–4300 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Storm, M. M. et al. Spectral conduct of plasmon enhanced fluorescence in natural–inorganic perovskite quantum dot options. Phys. Scr. 94, 055503 (2019).

    Article 

    Google Scholar
     

  • Juan, F. et al. Photoluminescence enhancement of perovskite CsPbBr3 quantum dots by plasmonic Au nanorods. Chem. Phys. 530, 110627 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, P. et al. Almost 100% effectivity enhancement of CH3NH3PbBr3 perovskite light-emitting diodes by using plasmonic Au nanoparticles. J. Phys. Chem. Lett. 8, 3961–3969 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Rational power band alignment and Au nanoparticles in floor plasmon enhanced Si-based perovskite quantum dot light-emitting diodes. Adv. Choose. Mater. 6, 1800693 (2018).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Enhancing luminescence in all-inorganic perovskite floor plasmon light-emitting diode by incorporating Au-Ag alloy nanoparticle. Choose. Mater. 89, 563–567 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shi, Z. et al. Localized floor plasmon enhanced all-inorganic perovskite quantum dot light-emitting diodes based mostly on coaxial core/shell heterojunction structure. Adv. Funct. Mater. 28, 1707031 (2018).

    Article 

    Google Scholar
     

  • Möller, S. & Forrest, S. R. Improved mild out-coupling in natural mild emitting diodes using ordered microlens arrays. J. Appl. Phys. 91, 3324 (2002).

    Article 

    Google Scholar
     

  • Do, Y. R., Kim, Y. C., Music, Y. W. & Lee, Y. H. Enhanced mild extraction effectivity from natural mild emitting diodes by insertion of a two-dimensional photonic crystal construction. J. Appl. Phys. 96, 7629 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Feng, J., Kawata, S. & Okamoto, T. Enhancement of electroluminescence by a two-dimensional corrugated metallic movie by grating-induced surface-plasmon cross coupling. Choose. Lett. 30, 2302–2304 (2005).

    Article 

    Google Scholar
     

  • Agrawal, M., Solar, Y., Forrest, S. R. & Peumans, P. Enhanced outcoupling from natural light-emitting diodes utilizing aperiodic dielectric mirrors. Appl. Phys. Lett. 90, 241112 (2007).

    Article 

    Google Scholar
     

  • Tsutsui, T., Yahiro, M., Yokogawa, H., Kawano, Ok. & Yokoyama, M. Doubling coupling-out effectivity in natural light-emitting units utilizing a skinny silica aerogel layer. Adv. Mater. 13, 1149–1152 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Gifford, D. Ok. & Corridor, D. G. Emission by one among two metallic electrodes of an natural light-emitting diode through surface-plasmon cross coupling. Appl. Phys. Lett. 81, 4315 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Salehi, A., Chen, Y., Fu, X., Peng, C. & So, F. Manipulating refractive index in natural light-emitting diodes. ACS Appl. Mater. Interf. 10, 9595–9601 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Ok. H. et al. Over 40 cd/A environment friendly inexperienced quantum dot electroluminescent machine comprising uniquely large-sized quantum dots. ACS Nano 8, 4893–4901 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pan, J. et al. Extremely environment friendly perovskite-quantum-dot light-emitting diodes by floor engineering. Adv. Mater. 28, 8718–8725 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y. H. et al. Complete defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kumar, S. et al. Anisotropic nanocrystal superlattices overcoming intrinsic mild outcoupling effectivity restrict in perovskite quantum dot light-emitting diodes. Nat. Commun. 13, 2106 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, W. et al. Extremely vibrant and secure single-crystal perovskite light-emitting diodes. Nat. Photon. 17, 401–407 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Solar, Y. et al. Brilliant and secure perovskite light-emitting diodes within the near-infrared vary. Nature 615, 830–835 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ye, Y.-C. et al. Minimizing optical power losses for long-lifetime perovskite light-emitting diodes. Adv. Funct. Mater. 31, 2105813 (2021).

    Article 
    CAS 

    Google Scholar
     

  • [ad_2]

    Leave a comment