[ad_1]
Gai S, Yang G, Yang P, He F, Lin J, Jin D, Xing B. Latest advances in useful nanomaterials for gentle–triggered most cancers remedy. Nano At this time. 2018;19:146–87.
Fan W, Huang P, Chen X. Overcoming the Achilles’ heel of photodynamic remedy. Chem Soc Rev. 2016;45:6488–519.
Hoover AR, Liu Okay, Valerio TI, Li M, Mukherjee P, Chen WR. Nano-ablative immunotherapy for most cancers remedy. Nanophotonics. 2021;10:3247–66.
Kossatz S, Grandke J, Couleaud P, Latorre A, Aires A, Crosbie-Staunton Okay. Environment friendly remedy of breast most cancers xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug supply. Breast Most cancers Res. 2015;17:66.
Linder LH, Lssels RD. Function of hyperthermia in medical oncology. Onkologe. 2010;16:1063–71.
Kumar AVP, Dubey SK, Tiwari S, Puri A, Hejmady S, Gorain B, Kesharwani P. Latest advances in nanoparticles mediated photothermal remedy induced tumor regression. Int J Pharm. 2021;606:120848.
Zou J, Li L, Yang Z, Chen X. Phototherapy meets immunotherapy: a win-win technique to battle towards most cancers. Nanophotonics. 2021;10:3229–45.
Mauro N, Utzeri MA, Varvara P, Cavallaro G. Functionalization of metallic and carbon nanoparticles with potential in most cancers theranostics. Molecules. 2021;26:3085.
Hu W, Prasad PN, Huang W. Manipulating the dynamics of darkish excited states in natural supplies for phototheranostics. Acc Chem Res. 2021;54:697–706.
Shramova EI, Kotlyar AB, Lebedenko EN, Deyev SM, Proshkina GM. Close to-infrared activated cyanine dyes as brokers for photothermal remedy and prognosis of tumors. Acta Nat. 2020;12:102–13.
Shao W, Lee J, Li F, Ling D. Natural small molecule nanoparticles for phototheranostics. Chem J Chin Univ. 2020;11:2356–82.
Zhu H, Cheng P, Chen P, Pu Okay. Latest progress on the event of near-infrared natural photothermal and photodynamic nanotherapeutics. Biomater Sci. 2018;6:746–65.
Zhou Z, Tune J, Nie L, Chen X. Reactive oxygen species producing methods assembly challenges of photodynamic most cancers remedy. Chem Soc Rev. 2016;45:6597–626.
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–13.
Brieger Okay, Schiavone S Jr, Miller FJ, Krause KH. Reactive oxygen species: from well being to illness. Swiss Med Wkly. 2012;142:13659.
Zhang C, Wang X, Du J, Gu Z, Zhao Y. Reactive oxygen species-regulating methods primarily based on nanomaterials for illness remedy. Adv Sci. 2021;8:2002797.
Ng KK, Zheng G. Molecular interactions in natural nanoparticles for phototheranostic purposes. Chem Rev. 2015;115:11012–42.
Chen J, Ning C, Zhou Z, Yu P, Zhu Y, Tan G, Mao C. Nanomaterials as photothermal therapeutic brokers. Prog Mater Sci. 2018;99:1–26.
Walsh JT. Primary interactions of sunshine with tissue. Amsterdam: Springer; 2011. p. 13–26.
Pei Q, Hu X, Zheng X, Liu S, Liu Y, Jing X, Xie Z. Mild-activatable crimson blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano. 2018;12:1630–41.
Shi S, Li Y, Zhang Q, Yang S, Liu J. Focused and NIR light-controlled supply of nitric oxide mixed with a platinum (IV) prodrug for enhanced anticancer remedy. J Mater Chem B. 2019;7:1867–74.
Maestro LM, Ramírez-Hernández JE, Bogdan N, Capobianco JA, Vetrone F, Solé JG, Jaque D. Deep tissue bio-imaging utilizing two-photon excited CdTe fluorescent quantum dots working inside the organic window. Nanoscale. 2011;4:298–302.
Weissleder R. A clearer imaginative and prescient for in vivo imaging. Nat Biotechnol. 2001;19:316–7.
Gao M, Yu F, Lv C, Choo J, Chen L. Fluorescent chemical probes for correct tumor prognosis and focusing on remedy. Chem Soc Rev. 2017;46:2237–71.
Stolik S, Delgado JA, Pérez A, Anasagasti L. Measurement of the penetration depths of crimson and close to infrared gentle in human “ex vivo” tissues. J Photochem Photobiol B Biol. 2000;57:90–3.
Robinson JT, Welsher Okay, Tabakman SM, Sherlock SP, Wang H, Luong R, Dai H. Excessive efficiency in vivo near-IR (>1 μm) imaging and photothermal most cancers remedy with carbon nanotubes. Nano Res. 2010;3:779–93.
Li B, Zhang Y, Zou R, Wang Q, Zhang B, An L, Yin F, Hua Y, Hu J. Self-assembled WO3-x hierarchical nanostructures for photothermal remedy with a 915 nm laser quite than the frequent 980 nm laser. Dalton Trans. 2014;43:6244–50.
Maltzahn GV, Park JH, Agrawal A, Bandaru NK, Das SK, Sailor MJ, Bhatia SN. Computationally guided photothermal tumor remedy utilizing long-circulating gold nanorod antennas. Can Res. 2009;69:3892–900.
Pech O, Gossner L, Could A, Rabenstein T, Vieth M, Stolte M. Lengthy-term outcomes of photodynamic remedy with 5-aminolevulinic acid for superficial Barrett’s most cancers and high-grade intraepithelial neoplasia. Gastrointest Endosc. 2005;62:24–30.
Tan L, Liu J, Zhou W, Wei J, Peng Z. A novel thermal and pH responsive drug supply system primarily based on ZnO@PNIPAM hybrid nanoparticles. Mater Sci Eng C. 2014;45:524–9.
Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal remedy and photoacoustic imaging by way of nanotheranostics in preventing most cancers. Chem Soc Rev. 2019;48:2053–108.
Lv S, Miao Y, Liu D, Tune F. Latest growth of photothermal brokers (PTAs) primarily based on small natural molecular dyes. ChemBioChem. 2020;21:2098–110.
James NS, Chen Y, Joshi P. Analysis of polymethine dyes as potential probes for close to infrared fluorescence imaging of tumors: part-1. Theranostics. 2013;9(3):692–702.
Ding Z, Gu Y, Zheng C, Gu Y, Yang J, Li D, Xu Y, Wang P. Natural small molecule-based photothermal brokers for most cancers remedy: design methods from single-molecule optimization to synergistic enhancement. Coord Chem Rev. 2022;464:214564.
Mishra A, Behera RK, Behera PK. Cyanines through the Nineties: a assessment. Chem Rev. 2000;100:1973–2011.
Lavis LD, Raines RT. Brilliant concepts for chemical biology. ACS Chem Biol. 2008;3(3):142–55.
Jin T, Cheng D, Jiang G, Xing W, Liu P, Wang B, Zhu W, Solar H, Solar Z, Xu Y, Qian X. Engineering naphthalimide-cyanine built-in near-infrared dye into ROS-responsive nanohybrids for tumor PDT/PTT/chemotherapy. Bioact Mater. 2022;14:42–51.
Gao S, Liu Y, Liu M, Yang D, Zhang M, Shi Okay. Biodegradable mesoporous nanocomposites with dual-targeting perform for enhanced anti-tumor remedy. J Management Launch. 2022;341:383–98.
Chen Y, Li Y, Liu J, Zhu Q, Ma J, Zhu X. Erythrocyte membrane bioengineered nanoprobes by way of indocyanine green-directed meeting for single NIR laser-induced environment friendly photodynamic/photothermal theranostics. J Management Launch. 2021;335:345–58.
Wang Y, Liu D, You M, Yang H, Ke H. Liposomal cyanine dyes with enhanced nonradiative transition for the synergistic phototherapy of tumors. J Mater Chem B. 2022;10(16):3016–22.
Desmettre T, Devoisselle JM, Mordon S. Fluorescence properties and metabolic options of indocyanine inexperienced (ICG) as associated to angiography. Surv Ophthalmol. 2000;1:15–27.
Tune X, Gong H, Liu T, Cheng L, Wang C, Solar X, Liang C, Liu Z. J-aggregates of natural dye molecules complexed with iron oxide nanoparticles for imaging-guided photothermal remedy below 915-nm gentle. Small. 2014;10:4362–70.
Qian H, Cheng Q, Tian Y, Dang H, Teng C, Yan L. An anti-aggregation NIR-II heptamethine-cyanine dye with a stereo-specific cyanine for imaging-guided photothermal remedy. J Mater Chem B. 2021;9:2688–96.
Mu X, Lu Y, Wu F, Wei Y, Ma H, Zhao Y, Solar J, Liu S, Zhou X, Li Z. Supramolecular nanodiscs self-assembled from non-ionic heptamethine cyanine for imaging-guided most cancers photothermal remedy. Adv Mater. 2020;32:e1906711.
Zhu S, Zhang J, Vegesna G. Managed Knoevenagel reactions of methyl teams of 1,3,5,7-tetramethyl BODIPY dyes for distinctive BODIPY dyes. RSC Adv. 2012;2:404–7.
Chen B, Cao J, Zhang Okay, Zhang Y, Lu J, Zubair Iqbal M, Zhang Q, Kong X. Synergistic photodynamic and photothermal remedy of BODIPY-conjugated hyaluronic acid nanoparticles. J Biomater Sci Polym Ed. 2021;32:2028–45.
Liu B, Jiao J, Xu W, Zhang M, Cui P, Guo Z, Deng Y, Chen H, Solar W. Extremely environment friendly far-red/NIR-absorbing impartial Ir (III) complicated micelles for potent photodynamic/photothermal remedy. Adv Mater. 2021;33:e2100795.
Yang M, Deng J, Su H, Gu S, Zhang J, Zhong A, Wu F. Small natural molecule-based nanoparticles with crimson/near-infrared aggregation-induced emission for bioimaging and PDT/PTT synergistic remedy. Mater Chem Entrance. 2021;5:406–17.
Tang Q, Xiao W, Huang C. pH-Triggered and enhanced simultaneous photodynamic and photothermal remedy guided by photoacoustic and photothermal imaging. Chem Mater. 2017;29:5216–24.
Wu Q, Zhu Y, Fang X, Hao X, Jiao L, Hao E, Zhang W. Conjugated BODIPY oligomers with controllable near-infrared absorptions as promising phototheranostic brokers via excited-state intramolecular rotations. ACS Appl Mater Interfaces. 2020;12:47208–19.
Zhang Y, Tune N, Li Y, Yang Z, Chen L, Solar T, Xie Z. Comparative examine of two near-infrared coumarin-BODIPY dyes for bioimaging and photothermal remedy of most cancers. J Mater Chem B. 2019;7:4717–24.
Su M, Han Q, Yan X, Liu Y, Luo P, Zhai W, Zhang Q, Li L, Li C. A supramolecular technique to engineering a non-photobleaching and near-infrared absorbing nano-J-aggregate for environment friendly photothermal remedy. ACS Nano. 2021;15:5032–42.
Xu Y, Wang S, Chen Z, Hu R, Li S, Zhao Y, Liu L, Qu J. Extremely steady natural photothermal agent primarily based on near-infrared-II fluorophores for tumor remedy. J Nanobiotechnol. 2021;19:37.
Beija M, Afonso CAM, Martinho JMG. Synthesis and purposes of Rhodamine derivatives as fluorescent probes. Chem Soc Rev. 2009;38:2410–33.
Liu J, Diwu Z, Leung WY, Lu Y, Patch B, Haugland RP. Rational design and synthesis of a novel class of extremely fluorescent rhodamine dyes which have sturdy absorption at lengthy wavelengths. Tetrahedron Lett. 2003;44:4355–9.
Alessi A, Salvalaggio M, Ruzzon G. Rhodamine 800 as reference substance for fluorescence quantum yield measurements in deep crimson emission vary. J Lumin. 2013;134:385–9.
Detty MR, Prasad PN, Donnelly DJ, Ohulchanskyy T, Gibson SL, Hilf R. Synthesis, properties, and photodynamic properties in vitro of heavy-chalcogen analogues of tetramethylrosamine. Bioorg Med Chem. 2004;12:2537–44.
Yuan L, Lin W, Chen H. Analogs of Changsha near-infrared dyes with massive stokes shifts for bioimaging. Biomaterials. 2013;34:9566–71.
Koide Y, Urano Y, Hanaoka Okay, Terai T, Nagano T. Evolution of group 14 rhodamines as platforms for near-infrared fluorescence probes using photoinduced electron switch. ACS Chem Biol. 2011;6:600–8.
Hu L, Yan Z, Xu H. Advances in synthesis and software of near-infrared absorbing squaraine dyes. RSC Adv. 2013;3:7667.
Escobedo JO, Rusin O, Lim S, Strongin RM. NIR dyes for bioimaging purposes. Curr Opin Chem Biol. 2010;14:64–70.
Umezawa Okay, Cittierio D, Suzuki Okay. Water-soluble NIR fluorescent probes primarily based on squaraine and their software for protein labeling. Anal Sci. 2008;24:213–7.
Nakazumi H, Ohta T, Etoh H, Uno T, Colyer C, Hyodo Y, Yagi S. Close to-infrared luminescent bis-squaraine dyes linked by a thiophene or pyrene spacer for noncovalent protein labeling. Synth Met. 2005;153:33–6.
Solar P, Wu Q, Solar X, Miao H, Deng W, Zhang W, Fan Q, Huang W. J-Combination squaraine nanoparticles with vivid NIR-II fluorescence for imaging guided photothermal remedy. Chem Commun. 2018;54:13395–8.
Yao D, Wang Y, Zou R, Bian Okay, Liu P, Shen S, Yang W, Zhang B, Wang D. Molecular engineered squaraine nanoprobe for NIR-II/photoacoustic imaging and photothermal remedy of metastatic breast most cancers. ACS Appl Mater Interfaces. 2020;12:4276–84.
Mori H, Tanaka T, Osuka A. Fused porphyrinoids as promising near-infrared absorbing dyes. J Mater Chem C. 2013;1:2500–19.
Toganoh M, Kimura T, Furuta H. Endocyclic extension of porphyrin p-System by inside functionalization of N-confused porphyrins. Chem Eur J. 2008;14:10585–94.
Yoon MC, Misra R, Yoon ZS, Kim KS, Lim JM, Chandrashekar TK, Kim DH. Photophysical properties of core-modifified expanded porphyrins: nature of aromaticity and enhancement of ring planarity. J Chem Phys B. 2008;112:6900–5.
Wu F, Chen L, Yue L, Wang Okay, Cheng Okay, Chen J, Luo X, Zhang T. Small-molecule porphyrin-based natural nanoparticles with outstanding photothermal conversion effectivity for in vivo photoacoustic imaging and photothermal remedy. ACS Appl Mater Interfaces. 2019;11:21408–16.
Bian H, Ma D, Zhang X, Xin Okay, Yang Y, Peng X, Xiao Y. Tailor-made engineering of novel xanthonium polymethine dyes for synergetic PDT and PTT triggered by 1064 nm laser towards deep-seated tumors. Small. 2021;17:e2100398.
Quail DF, Joyce JA. Microenvironmental regulation of tumor development and metastasis. Nat Med. 2013;19:1423–37.
Wang HW, Putt ME, Emanuele MJ, Shin DB, Glatstein E, Yodh AG, Busch TM. Therapy-induced adjustments in tumor oxygenation predict photodynamic remedy final result. Can Res. 2004;64:7553–61.
Wilson WR, Hay MP. Focusing on hypoxia in most cancers remedy. Nat Rev Most cancers. 2011;11:393–410.
Moen I, Stuhr LEB. Hyperbaric oxygen remedy and most cancers—a assessment. Goal Oncol. 2012;7:233–42.
Wang W, Ding J, Solar Q, Xu X, Chen G. Function of hyperbaric oxygen in glioma: a story assessment. Med Fuel Res. 2022;12:1–5.
Li X, Lee D, Huang J, Yoon J. Phthalocyanine-assembled nanodots as photosensitizers for extremely environment friendly kind I photoreactions in photodynamic remedy. Angew Chem Int Ed. 2018;57:9885–90.
Sai DL, Lee J, Nguyen DL, Kim YP. Tailoring photosensitive ROS for superior photodynamic remedy. Exp Mol Med. 2021;53:495–504.
Foote CS. Definition of type-I and type-II photosensitized oxidation. Photochem Photobiol. 1991;54:659–659.
Mroz P, Yaroslavsky A, Kharkwal GB, Hamblin MR. Cell demise pathways in photodynamic remedy of most cancers. Cancers. 2011;3:2516–39.
Yoo JO, Ha KS. New insights into the mechanisms for photodynamic therapy-induced most cancers cell demise. Int Rev Cell Mol Biol. 2012;295:139–74.
Kessel D, Oleinick NL. Cell demise pathways related to photodynamic remedy: an replace. Photochem Photobiol. 2018;94:213–8.
Almeida RD, Manadas BJ, Carvalho AP, Duarte CB. Intracellular signaling mechanisms in photodynamic remedy. Biochim Biophys Acta Rev Most cancers. 2004;1704:59–86.
Oleinick NL, Morris RL, Belichenko I. The function of apoptosis in response to photodynamic remedy: what, the place, why, and the way. Photochem Photobiol Sci. 2002;1:1–21.
Bonora M, Pinton P. The mitochondrial permeability transition pore and most cancers: molecular mechanisms concerned in cell demise. Entrance Oncol. 2014;4:302.
Moserova I, Kralova J. Function of ER stress response in photodynamic remedy: ROS generated in numerous subcellular compartments set off various cell demise pathways. PLoS ONE. 2012;7:e32972.
Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell demise. J Cell Biol. 2004;165:347–56.
Lin CW, Shulok JR, Kirley SD, Bachelder CM, Flotte TJ. Photodynamic destruction of lysosomes mediated by Nile blue photosensitizers. Photochem Photobiol. 1993;58:81–91.
Coupienne I, Fettweis G, Rubio N, Agostinis P, Piette J. 5-ALA-PDT induces RIP3-dependent necrosis in glioblastoma. Photochem Photobiol Sci. 2011;10:1868–78.
Miki Y, Akimoto J, Moritake Okay, Hironaka C, Fujiwara Y. Photodynamic remedy utilizing talaporfin sodium induces concentration-dependent programmed necroptosis in human glioblastoma T98G cells. Lasers Med Sci. 2015;30:1739–45.
Liang LM, Bi WX, Tian YY. Autophagy in photodynamic remedy. Trop J Pharm Res. 2016;15:885–9.
Tune C, Xu W, Wu H, Wang X, Gong Q, Liu C, Liu J, Zhou L. Photodynamic remedy induces autophagy-mediated cell demise in human colorectal most cancers cells by way of activation of the ROS/JNK signaling pathway. Cell Loss of life Dis. 2020;11:938.
Allison RR, Sibata CH. Oncologic photodynamic remedy photosensitizers: a scientific assessment. Photodiagn Photodyn Ther. 2010;7:61–75.
Ju E, Dong Okay, Chen Z, Liu Z, Liu C, Huang Y, Wang Z, Pu F, Ren J, Qu X. Copper (II)-graphitic carbon nitride triggered synergy: improved ROS era and decreased glutathione ranges forenhanced photodynamic remedy. Angew Chem Int Ed. 2016;55:1–6.
Zhu W, Dong Z, Fu T, Liu J, Chen Q, Li Y, Zhu R, Xu L, Liu Z. Modulation of hypoxia in stable tumor microenvironment with MnO2 nanoparticles to reinforce photodynamic remedy. Adv Funct Mater. 2016;26:5490–8.
Liu Y, Liu Y, Bu W, Cheng C, Zuo C, Xiao Q, Solar Y, Ni D, Zhang C, Liu J, Shi J. Hypoxia induced by upconversion-based photodynamic remedy: in the direction of extremely efficient synergistic bioreductive remedy in tumors. Angew Chem Int Ed. 2015;54:8105–9.
Paszko E, Ehrhardt C, Senge MO, Kelleher DP, Reynolds JV. Nanodrug purposes in photodynamic remedy. Photodiagn Photodyn Ther. 2011;8:14–29.
Spyratou E, Makropoulou M, Mourelatou EA, Demetzos C. Biophotonic methods for manipulation and characterization of drug supply nanosystems in most cancers remedy. Most cancers Lett. 2012;327:111–22.
Kojima C, Toi Y, Harada A, Kono Okay. Preparation of poly (ethylene glycol)-attached dendrimers encapsulating photosensitizers for software to photodynamic remedy. Bioconjug Chem. 2007;18:663–70.
Hammerer F, Garcia G, Chen S, Poyer F, Achelle S, Fiorini-Debuisschert C, Teulade-Fichou MP, Maillard P. Synthesis and characterization of glycoconjugated porphyrin triphenylamine hybrids for focused two-photon photodynamic remedy. J Org Chem. 2014;79(3):1406–17.
Ke H, Ma W, Wang H, Cheng G, Yuan H, Wong WK, Kwong DWJ, Tam HL, Cheah KW, Chan CF, Wong KL. Synthesis, singlet-oxygen photogeneration, two-photon absorption, photo-induced DNA cleavage and cytotoxic properties of an amphiphilic β-Schiff-base linked Ru(II) polypyridyl–porphyrin conjugate. J Lumin. 2014;154:356–61.
Tachikawa S, Sato S, Hazama H, Kaneda Y, Awazu Okay, Nakamura H. Localization-dependent cell-killing results of protoporphyrin (PPIX)-lipid micelles and liposomes in photodynamic remedy. Bioorg Med Chem. 2015;23:7578–84.
Shemesh Y, Yavin E. PNA rose bengal conjugates as environment friendly DNA photomodulators. Bioconjug Chem. 2015;26:1916–22.
Moret F, Scheglmann D, Reddi E. Folate-targeted PEGylated liposomes enhance the selectivity of PDT with meta-tetra(hydroxyphenyl)-chlorin (m-THPC). Photochem Photobiol Sci. 2013;12:823–34.
Nwahara N, Abrahams G, Prinsloo E, Nyokong T. Folic acid-modifified phthalocyanine-nanozyme loaded liposomes for focused photodynamic remedy. Photodiagn Photodyn Ther. 2021;36:102527.
Ma X, Qu Q, Zhao Y. Focused supply of 5-aminolevulinic acid by multifunctional hole mesoporous silica nanoparticles for photodynamic pores and skin most cancers remedy. ACS Appl Mater Interfaces. 2015;7:10671–6.
Xu P, Chen J, Chen Z, Zhou S, Hu P, Chen X, Huang M. Receptor-targeting phthalocyanine photosensitizer for bettering antitumor photocytotoxicity. PLoS ONE. 2012;7:e37051.
Li L, Chen Y, Chen W, Tan Y, Chen H, Yin J. Photodynamic remedy primarily based on natural small molecular fluorescent dyes. Chin Chem Lett. 2019;30:1689–703.
Yang Y, Guo Q, Chen H, Zhou Z, Guo Z, Shen Z. Thienopyrrole-expanded BODIPY as a possible NIR photosensitizer for photodynamic remedy. Chem Commun. 2013;49:3940–2.
Durantini AM, Greene LE, Lincoln R, Martínez SR, Cosa G. Reactive oxygen species mediated activation of a dormant singlet oxygen photosensitizer: from autocatalytic singlet oxygen amplifification to chemicontrolled photodynamic remedy. J Am Chem Soc. 2016;138:1215–25.
Nair LV, Nazeer SS, Jayasree RS, Ajayaghosh A. Fluorescence imaging assisted photodynamic remedy utilizing photosensitizer-linked gold quantum clusters. ACS Nano. 2015;9:5825–32.
Huang Q, Wang S, Li Q, Pan W, Deng P, Zhou H, Pan Z. Synthesis and characterization of curcumin bridged porphyrins as photosensitizers. Chem J Chin Univ-Chin. 2012;33:732–7.
Zhang F, Huang Q, Liu J, Huang M, Xue J. Molecular-target-based anticancer photosensitizer: synthesis and in vitro photodynamic exercise of erlotinib-zinc (II) phthalocyanine conjugates. ChemMedChem. 2015;10:312–20.
Weng X, Liu J. Methods for maximizing photothermal conversion effectivity primarily based on natural dyes. Drug Discov At this time. 2021;26:2045–52.
Jiang Y, Lu Y, Lei L, Zhou S, Yang L, Yang X, Xu Z, Liu J, Liu Y. Close to-infrared light-triggered synergistic antitumor remedy primarily based on hole ZIF-67-derived Co3S4-indocyanine inexperienced nanocomplex as a superior reactive oxygen species generator. Mater Sci Eng, C. 2021;130:112465.
Zeng L, Cheng H, Dai Y, Su Z, Wang C, Lei L, Lin D, Li X, Chen H, Fan Okay, Shi S. Invivo regenerable cerium oxide nanozyme-loaded pH/H2O2-responsive nanovesicle for tumor-targeted photothermal and photodynamic therapies. ACS Appl Mater Interfaces. 2021;13:233–44.
Xu X, Zhang R, Yang X, Lu Y, Yang Z, Peng M, Ma Z, Jiao J, Li L. Honeycomb-like bismuth/manganese oxide nanoparticle with mutual reinforcement of inner and exterior response for triple-negative Bbeast most cancers focused remedy. Adv Healthcare Mater. 2021;10:e2100518.
Wang C, Chen S, Yu F, Lv J, Zhao R, Hu F, Yuan H. Twin-channel theranostic system for quantitative self-indication and low-temperature synergistic remedy of most cancers. Small. 2021;17:e2007953.
Li S, Yang S, Liu C, He J, Li T, Fu C, Meng X, Shao H. Enhanced photothermal-photodynamic remedy by indocyanine inexperienced and curcumin-loaded layered MoS2 hole spheres by way of inhibition of p-glycoprotein. Int J Nanomed. 2021;16:433–42.
Ethirajan M, Chen Y, Joshi P, Pandey RK. The function of porphyrin chemistry in tumor imaging and photodynamic remedy. Chem Soc Rev. 2011;40:340–62.
Kuo WS, Chang YT, Cho KC. Gold nanomaterials conjugated with indocyanine inexperienced for dual-modality photodynamic and photothermal remedy. Biomaterials. 2012;33:3270–8.
Khullar P, Singh V, Mahal A, Dave PN, Thakur S, Kaur G, Singh J, Kamboj SS, Bakshi MS. Bovine serumalbumin bioconjugated gold nanoparticles; synthesis, hemolysis, and cytotoxicity in the direction of most cancers cell traces. J Chem Phys C. 2012;116:8834–43.
Hu M, Zhi JC, Li Y, Au L, Hartland GV, Li X, Marquez M, Xia Y. Gold nanostructures: engineering their plasmonic properties for biomedical purposes. Chem Soc Rev. 2006;35:1084–94.
Dube T, Kompella UB, Panda JJ. Close to infrared triggered chemo-PTT-PDT impact mediated by glioma directed twin functional-chimeric peptide-decorated gold nanoroses. J Photochem Photobiol B. 2022;228:112407.
Gong B, Shen Y, Li H, Li X, Huan X, Zhou J, Chen Y, Wu J, Li W. Thermo-responsive polymer encapsulated gold nanorods for single steady wave laser-induced photodynamic/photothermal tumour remedy. J Nanobiotechnol. 2021;19:41.
Hu J, Luo H, Qu Q, Liao X, Huang C, Chen J, Cai Z, Bao Y, Chen G, Li B, Cui W. Cell membrane-inspired polymeric vesicles for mixed photothermal and photodynamic prostate most cancers remedy. ACS Appl Mater Interfaces. 2020;12:42511–20.
Li W, Zhang H, Guo X, Wang Z, Kong F, Luo L, Li Q, Zhu C, Yang J, Lou Y, Du YZ, You J. Gold nanospheres-stabilized indocyanine inexperienced as a synchronous photodynamic-photothermal remedy platform that inhibits tumor development and metastasis. ACS Appl Mater Interfaces. 2017;9:3354–67.
Liu J, Liang H, Li M, Luo Z, Zhang J, Guo X, Cai Okay. Tumor acidity activating multifunctional nanoplatform for NIR-mediated a number of enhanced photodynamic and photothermal tumor remedy. Biomaterials. 2018;157:107–24.
Solar C, Liu Y, Du J, Cao Z, Xu C, Wang J. Facile era of tumor-pH-labile linkage-bridged block copolymers for chemotherapeutic supply. Angew Chem Int Ed. 2016;55:1010–4.
Yuan Y, Mao C, Du X, Du J, Wang F, Wang J. Floor cost switchable nanoparticles primarily based on zwitterionic polymer for enhanced drug supply to tumor. Adv Mater. 2012;24:5476–80.
Zhou ZX, Shen YQ, Tang JB, Fan MH, Van Kirk EA, Murdoch WJ, Radosz M. Cost-reversal drug conjugate for focused most cancers cell nuclear drug supply. Adv Funct Mater. 2009;19:3580–9.
Deng H, Liu J, Zhao X, Zhang Y, Liu J, Xu S, Deng L, Dong A, Zhang J. PEG-b-PCL copolymer micelles with the flexibility of pH-controlled negative-to-positive cost reversal for intracellular supply of doxorubicin. Biomacromol. 2014;15:4281–92.
Cai X, Zhao Y, Wang L, Hu M, Wu Z, Liu L, Zhu W, Pei R. Synthesis of Au@MOF core-shell hybrids for enhanced photodynamic/photothermal remedy. J Mater Chem B. 2021;9:6646–57.
Pasquale EB. Eph receptor signalling casts a large web on cell habits. Nat Rev Mol Cell Biol. 2005;6:462–75.
Kumar SR, Scehnet JS, Ley EJ, Singh J, Krasnoperov V, Liu R. Preferential induction of EphB4 over EphB2 and its implication in colorectal most cancers development. Most cancers Res. 2009;69:3736–45.
Li W, Guo X, Kong F, Zhang H, Luo L, Li Q, Zhu C, Yang J, Du Y, You J. Overcoming photodynamic resistance and tumor focusing on dualtherapy mediated by indocyanine inexperienced conjugated gold nanospheres. J Management Launch. 2017;258:171–81.
Li W, Yang J, Luo L, Jiang M, Qin B, Yin H, Zhu C, Yuan X, Zhang J, Luo Z, Du Y, Li Q, Lou Y, Qiu Y, You J. Targetting photodynamic and photothermal remedy to the endoplasmic reticulum enhances immunogenic most cancers cell demise. Nat Commun. 2019;10:3349–64.
Solar L, Wang J, Liu J, Li L, Xu ZP. Creating structural defects of drug-free copper-containing layered double hydroxide nanoparticles to synergize photothermal/photodynamic/chemodynamic most cancers remedy. Small Struct. 2021;2:2000112.
Bejjanki NK, Zhong Y, Liu J, Li Q, Xu H, Shen H, Xie M. Floor cost transition nano-theranostics primarily based on ultra-small Fe3O4 nanoparticles for enhanced photodynamic and photothermal remedy towards nasopharyngeal carcinoma. Biochem Biophys Res Commun. 2021;557:240–6.
Xue P, Hou M, Solar L, Li Q, Zhang L, Xu Z, Kang Y. Calcium-carbonate packaging magnetic polydopamine nanoparticles loaded with indocyanine inexperienced for near-infrared induced photothermal/photodynamic remedy. Acta Biomater. 2012;81:242–55.
Cao J, Qiao B, Luo Y, Cheng C, Yang A, Wang M, Yuan X, Fan Okay, Li M, Wang Z. A multimodal imaging-guided nanoreactor for cooperative mixture of tumor hunger and a number of mechanism-enhanced delicate temperature phototherapy. Biomater Sci. 2020;8:6561–78.
An N, Wang Y, Li M, Lin H, Qu F. The synthesis of core-shell Cu9S5@mSiO2-ICG@PEG-LA for photothermal and photodynamic remedy. New J Chem. 2018;42:18318–27.
Zhang H, Zhang X, Zhu X, Chen J, Chen Q, Zhang H, Hou L, Zhang Z. NIR light-induced tumor phototherapy utilizing photo-stable ICG supply system primarily based on inorganic hybrid. Nanomed Nanotechnol Biol Med. 2017;14:73–84.
Shen Z, Xia J, Ma Q, Zhu W, Gao Z, Han S, Liang Y, Cao J, Solar Y. Tumor microenvironment-triggered nanosystems as dual-relief tumor hypoxia immunomodulators for enhanced phototherapy. Theranostics. 2020;10:9132–52.
Fang C, Yan P, Ren Z, Wang Y, Cai X, Li X, Han G. Multifunctional MoO2-ICG nanoplatform for 808nm-mediated synergetic photodynamic/photothermal remedy. Appl Mater At this time. 2019;15:472–81.
Liu J, Yin Y, Yang L, Lu B, Yang Z, Wang W, Li R. Nucleus-targeted photosensitizer nanoparticles for photothermal and photodynamic remedy of breast carcinoma. Int J Nanomed. 2021;16:1473–85.
Pan J, Yang Y, Fang W, Liu W, Le Okay, Xu D, Li X. Fluorescent phthalocyanine-graphene conjugate with enhanced NIR absorbance for imaging and multi-Modality remedy. ACS Appl Nano Mater. 2018;1:2785–95.
Jiang B, Hu L, Shen X, Ji S, Shi Z, Liu C, Zhang L. One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic remedy. ACS Appl Mater Interfaces. 2014;6:18008–17.
Wang M, Xiao Y, Li Y, Wu J, Li F, Ling D, Gao J. Reactive oxygen species and near-infrared gentle dual-responsive indocyanine green-loaded nanohybrids for overcoming tumour multidrug resistance. Eur J Pharm Sci. 2019;134:185–93.
Luo S, Yang Z, Tan X, Wang Y, Zeng Y, Wang Y, Li C, Li R. A multifunctional photosensitizer grafted on polyethylene glycol and polyethylenimine dual-functionalized nanographene oxide for cancer-targeted near-infrared imaging and synergistic phototherapy. ACS Appl Mater Interfaces. 2016;8:17176–86.
Plaetzer Okay, Kiesslich T, Oberdanner CB, Krammer B. Following photodynamic tumor remedy: induction, mechanisms and detection. Curr Pharm Des. 2005;11:1151–65.
Melamed JR, Edelstein RS, Day ES. Elucidating the basic mechanisms of cell demise triggered by photothermal remedy. ACS Nano. 2015;9:6–11.
Dayal JH, Cole CL, Pourreyron C, Watt SA, Lim YZ, Salas-Alanis JC, Murrell DF, McGrath JA, Stieger B, Jahoda C, Leigh IM, South AP. Sort VII collagen regulates expression of OATP1B3, promotes front-to-rear polarity and will increase structural organisation in 3D spheroid cultures of RDEB tumour keratinocytes. J Cell Sci. 2014;127:740–51.
Zeng Y, Yang Z, Luo S, Li H, Liu C, Hao Y, Liu J, Wang W, Li R. Quick and facile preparation of PEGylated graphene from graphene oxide by lysosome focusing on supply of photosensitizer to effectively improve photodynamic remedy. RSC Adv. 2015;5:57725–34.
Nakanishi T, Tamai I. Putative roles of natural anion transporting polypeptides (OATPs) in cell survival and development of human cancers. Biopharm Drug Dispos. 2014;35:463–84.
Thakkar N, Lockhart AC, Lee W. Function of natural anion-transporting polypeptides (OATPs) in most cancers remedy. AAPS J. 2015;17:535–45.
Wang S, Wang Y, Wang S, Guo S, Gu D, Wang J, Yang Y. Lipase immobilization on multi-walled carbon nanotubes used as a goal fishing device and adopted by molecular docking approach to research lipase inhibitor from Robinia pseudoacacia L. Ind Crops Prod. 2022;178:114645.
Craciun MF, Russo S, Yamamoto M, Tarucha S. Tuneable digital properties in grapheme. Nano At this time. 2011;6:42–60.
Liu Y, Li H, Xie J, Zhou M, Huang H, Lu H, Chai Z, Chen J, Hu Y. Facile building of mitochondria-targeting nanoparticles for enhanced phototherapeutic results. Biomater Sci. 2017;5:1022–31.
Liu S, Wei X, Zhao X, Chen L, Yan X. Close to-infrared photothermal/photodynamic-in-one brokers built-in with a guanidinium-based covalent natural framework for clever focused imaging-guided precision chemo/PTT/PDT sterilization. ACS Appl Mater Interfaces. 2021;13:27895–903.
Zhou Y, Liu S, Hu C, Cai L, Pang M. Covalent natural framework as a nanocarrier for synergistic phototherapy and immunotherapy. J Mater Chem B. 2020;8:5451–9.
Liu B, Li C, Xing B, Yang P, Lin J. Multifunctional UCNPs@PDA-ICG nanocomposites for upconversion imaging and mixed photothermal/photodynamic remedy with enhanced antitumor efficacy. J Mater Chem B. 2016;4:4884–94.
Zhang X, Zhao S, Gao Z, Zhou J, Xia Y, Tian J, Shi C, Wang Z. Liposome trade-off technique in mitochondria-targeted NIR-cyanine: balancing blood circulation and cell retention for enhanced antitumor phototherapy in vivo. Nano Res. 2021;14:2432–40.
Zhang H, Pei Y, Zhang X, Zhu L, Hou L, Chang J, Zhang Z. Engineering of an clever cascade nanoreactor for sequential enchancment of microenvironment and enhanced tumor phototherapy. Appl Mater At this time. 2020;18:100494.
Chi J, Ma Q, Shen Z, Ma C, Zhu W, Han S, Liang Y, Cao J, Solar Y. Focused nanocarriers primarily based on iodinated-cyanine dyes as immunomodulators for synergistic phototherapy. Nanoscale. 2020;12:11008–25.
Shi S, Wang Y, Wang B, Chen Q, Wan G, Yang X, Zhang J, Zhang L, Li C, Wang Y. Homologous-targeting biomimetic nanoparticles for photothermal remedy and Nrf2-siRNA amplified photodynamic remedy towards oral tongue squamous cell carcinoma. Chem Eng J. 2020;388:124268.
Ding N, Zou Z, Sha H, Su S, Qian H, Meng F, Chen F, Du S, Zhou S, Chen H, Zhang L, Yang J, Wei J, Liu B. iRGD synergizes with PD-1 knockout immunotherapy by enhancing lymphocyte infiltration in gastric most cancers. Nat Commun. 2019;10:1336.
Sheng Y, Wang Z, Neubi GMN, Cheng H, Zhang C, Zhang H, Wang R, Zhou J, Ding Y. Lipoprotein-inspired penetrating nanoparticles for deep tumor-targeted shuttling of indocyanine inexperienced and enhanced photo-theranostics. Biomater Sci. 2019;7:3425–37.
Cai Okay, Hou Y, Hu Y, Zhao L, Luo Z, Shi Y, Lai M, Yang W, Liu P. Correlation of the cytotoxicity of TiO2 nanoparticles with totally different particle sizes on a sub-200-nm scale. Small. 2011;7:3026–31.
Li RT, Zhu YD, Li WY, Hou YK, Zou YM, Zhao YH, Zou Q, Zhang WH, Chen JX. Synergistic photothermal-photodynamic-chemotherapy towards breast most cancers primarily based on a liposome-coated core-shell AuNS@NMOFs nanocomposite encapsulated with gambogic acid. J Nanobiotechnol. 2022;20:212.
Liang P, Tang H, Gu R, Xue L, Chen D, Wang W, Yang Z, Si W, Dong X. A pH-responsive zinc(II) metalated porphyrin for enhanced photodynamic/photothermal mixed most cancers remedy. Sci China Mater. 2019;62:1199–209.
Chung US, Kim JH, Kim B, Kim E, Jang WD, Koh WG. Dendrimer porphyrin-coated gold nanoshells for the synergistic mixture of photodynamic and photothermal remedy. Chem Commun. 2015;52:1258–61.
Trapani M, Romeo A, Parisi T, Sciortino MT, Patane S, Villari V, Mazzaglia A. Supramolecular hybrid assemblies primarily based on gold nanoparticles, amphiphilic cyclodextrin and porphyrins with mixed phototherapeutic motion. RSC Adv. 2013;3:5607–14.
Wei X, Chen H, Tham HP, Zhang N, Xing P, Zhang G. Mixed photodynamic and photothermal remedy utilizing cross-linked polyphosphazene nanospheres embellished with gold nanoparticles. ACS Appl Nano Mater. 2018;1:3663–72.
Sui C, Tan R, Chen Y, Yin G, Wang Z, Xu W, Li X. MOFs-derived Fe-N codoped carbon nanoparticles as O2-evolving reactor and ROS generator for CDT/PDT/PTT synergistic remedy of tumors. Bioconjug Chem. 2021;32:318–27.
Zhang S, Lv H, Zhao J, Cheng M, Solar S. Synthesis of porphyrin-conjugated silica coated Au nanorods for synergistic remedy of PTT and PDT of tumor. Nanotechnology. 2019;30:265102.
Huang CC, Parasuraman PS, Tsai HC, Jhua JJ, Imae T. Synthesis and characterization of porphyrin-TiO2 core-shell nanoparticles as seen gentle photocatalyst. RSC Adv. 2014;4:6540–4.
Chen RJ, Chen PC, Prasannan A, Vinayagam J, Huang CC, Chou PY, Weng CC, Tsai HC, Lin SY. Formation of gold embellished porphyrin nanoparticles and analysis of their photothermal and photodynamic exercise. Mater Sci Eng C. 2016;63:678–85.
Wang S, Chen W, Jiang C, Lu L. Nanoscaled porphyrinic metal-organic framework for photodynamic/photothermal remedy of tumor. Electrophoresis. 2019;40:2204–10.
Ou C, Zhang Y, Pan D, Ding Okay, Zhang S, Xu W, Wang W, Si W, Yang Z, Dong X. Zinc porphyrin-polydopamine core-shell nanostructure for enhanced photodynamic/photothermal most cancers remedy. Mater Chem Entrance. 2019;3:1786–92.
Wang Z, Chen L, Wang Okay, Chau HF, Wong KL, Fung YH, Wu F. Triphenylamine-substituted zinc porphyrin nanoparticles with photodynamic/photothermal exercise for most cancers phototherapy in vitro. J Porphyrins Phthalocyanines. 2020;24:1113–20.
Tian J, Ding L, Ju H, Yang Y, Li X, Shen Z, Zhu Z, Yu JS, Yang CJ. A multifunctional nanomicelle for realtime focused imaging and exact near-infrared most cancers remedy. Angew Chem Int Ed. 2014;53:9544–9.
Gatenby RA, Gillies RJ. Why do cancers have excessive cardio glycolysis? Nat Rev Most cancers. 2004;4:891–9.
Ozlem S, Akkaya EU. Considering exterior the silicon field: Molecular and logic as a further layer of selectivity in singlet oxygen era for photodynamic remedy. J Am Chem Soc. 2008;131:48–9.
Weerakkody D, Moshnikova A, Thakur MS. Household of pH (low) insertion peptides for tumor focusing on. Proc Natl Acad Sci USA. 2013;110:5834–9.
Zhang H, Li Y, Chen Y, Wang M, Wang X, Yin X. Fluorescence and magnetic resonance dual-modality imagingguided photothermal and photodynamic dual-therapy with magnetic porphyrin-metal natural framework nanocomposites. Sci Rep. 2017;7:44153–63.
Chen R, Chen W, Yan L, Tian S, Liu B, Chen X, Lee C, Zhang W. Harnessing combinational phototherapy by way of post-synthetic PpIX conjugation on nanoscale metal-organic frameworks. J Mater Chem B. 2019;7:4763–70.
Wang X, Peng H, Yang W, Ren Z, Liu X, Liu Y. Indocyanine green-platinum porphyrins built-in conjugated polymer hybrid nanoparticles for near-infrared-triggered photothermal and two-photon photodynamic remedy. J Mater Chem B. 2017;5:1856–62.
Feng J, Ren W, Kong F, Dong Y. A covalent natural framework-based nanoagent for H2S-activable phototherapy towards colon most cancers. Chem Commun. 2021;57:7240–3.
Feng L, Chen M, Li R, Zhou L, Wang C, Ye P, Hu X, Yang J, Solar Y, Zhu Z, Fang Okay, Chai Okay, Shi S, Dong C. Biodegradable oxygen-producing manganese-chelated metallic natural frameworks for tumor-targeted synergistic chemo/photothermal/ photodynamic remedy. Acta Biomater. 2022;138:463–77.
Zhang Y, Ma J, Wang D, Xu C, Sheng S, Cheng J, Bao C, Li Y, Tian H. Fe-TCPP@CS nanoparticles as photodynamic and photothermal agent for environment friendly antimicrobial remedy. Biomater Sci. 2020;8:6526–32.
Feng DW, Chung WC, Wei ZW, Gu ZY, Jiang HL, Chen YP, Darensbourg DJ, Zhou HC. Building of ultrastable porphyrin Zr metallic−natural frameworks via linker elimination. J Am Chem Soc. 2013;135:17105–10.
Wang KK, Huang HL, Xue WJ, Liu DH, Zhao XD, Xiao YL, Li ZJ, Yang QY, Wang LY, Zhong CL. An ultrastable Zr metallic–natural framework with a thiophene-type ligand containing methyl teams. CrystEngComm. 2015;17:3586–90.
Li S, Cheng H, Qiu W, Zhang L, Wan S, Zeng J, Zhang X. Most cancers cell membrane-coated biomimetic platform for tumor focused photodynamic remedy and hypoxia-amplified bioreductive remedy. Biomaterials. 2017;142:149–61.
Li Y, Lu W, Huang Q, Huang M, Li C, Chen W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine. 2010;5:1161–71.
Zha Z, Zhang S, Deng Z, Li Y, Li C, Dai Z. Enzyme-responsive copper sulphide nanoparticles for mixed photoacoustic imaging, tumor-selective chemotherapy and photothermal remedy. Chem Commun. 2013;49:3455–7.
Han D, Han Y, Li J, Liu X, Yeung KWK, Zheng Y, Cui Z, Yang X, Liang Y, Li Z, Zhu S, Yuan X, Feng X, Yang C, Wu S. Enhanced photocatalytic exercise and photothermal results of Cu-doped metal-organic frameworks for speedy remedy of bacteria-infected wounds. Appl Catal B. 2020;261:118248.
Yue J, Mei Q, Wang P, Miao P, Dong W, Li L. Mild-triggered multifunctional nanoplatform for environment friendly most cancers photo-immunotherapy. J Nanobiotechnol. 2022;20:181.
Solar T, Xia R, Zhou J, Zheng X, Liu S, Xie Z. Protein-assisted synthesis of nanoscale covalent natural frameworks for phototherapy of most cancers. Mater Chem Entrance. 2020;4:2346–56.
Cao Y, Dong H, Yang Z, Zhong X, Chen Y, Dai W, Zhang X. Aptamer-conjugated graphene quantum dots/porphyrin by-product theranostic agent for intracellular cancer-related microRNA detection and fluorescence-guided photothermal/photodynamic synergetic remedy. ACS Appl Mater Interfaces. 2017;9:159–66.
Wei G, Yan M, Ma L, Wang C. Photothermal and photodynamic remedy reagents primarily based on rGO-C6H4-COOH. RSC Adv. 2016;6:3748–55.
Yu Z, Li X, Xu F, Hu X, Yan J, Kwon N, Chen GR, Tang T, Dong X, Mai Y, Chen D, Yoon J, He XP, Tian H. A supramolecular-based dual-wavelength phototherapeutic agent with broad spectrum antimicrobial exercise towards drug resistant micro organism. Angew Chem Int Ed. 2020;59:3658–64.
Li Q, Hong L, Li H, Liu C. Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal remedy triggered by near-infrared gentle. Biosensors Bioelectron. 2017;89:477–82.
Guan Q, Fu DD, Li YA, Kong XM, Wei ZY, Li WY, Zhang SJ, Dong YB. BODIPY-decorated nanoscale covalent natural frameworks for photodynamic remedy. iScience. 2019;14:180–98.
Guan Q, Zhou L, Li Y, Li W, Wang S, Tune C, Dong Y. Nanoscale covalent natural framework for combinatorial antitumor photodynamic and photothermal remedy. ACS Nano. 2019;13:13304–16.
Bhaumik J, Gogia G, Kirar S, Vijay L, Thakur NS, Banerjee UC, Laha JK. Bioinspired nanophotosensitizers: synthesis and characterization of porphyrin-noble metallic nanoparticle conjugates. New J Chem. 2016;40:724–31.
Liu S, Liu Y, Hu C, Zhao X, Ma P, Pang M. Boosting the antitumor efficacy over a nanoscale porphyrin-based covalent natural polymer by way of synergistic photodynamic and photothermal remedy. Chem Commun. 2019;55:6269–72.
Yang M, Cao S, Solar X, Su H, Li H, Liu G, Luo X, Wu F. Self-assembled naphthalimide conjugated porphyrins nanomaterials with D-A construction for PDT/PTT synergistic remedy. Bioconjug Chem. 2020;31:663–72.
Zheng X, Wang L, Lei Z, Pei Q, Liu S, Xie Z. Steady supramolecular porphyrin@albumin nanoparticles for optimum photothermal exercise. Mater Chem Entrance. 2019;3:1892–9.
Yang L, Zhou J, Wang Z, Li H, Wang Okay, Liu H, Wu F. Biocompatible conjugated porphyrin nanoparticles with photodynamic/photothermal performances in most cancers remedy. Dyes Pigm. 2020;182:108664.
Cheng Q, Li Z, Solar Y, Zhang X. Managed synthesis of a core-shell nanohybrid for efficient multimodal image-guided mixed photothermal/photodynamic remedy of tumors. NPG Asia Mater. 2019;11:63–77.
Wang L, Du W, Hu Z, Uvdal Okay, Li L, Huang W. Hybrid rhodamine fluorophores within the seen/NIR area for organic imaging. Angew Chem Int Ed. 2019;58:14026–43.
Eggeling C, Volkmer A, Seidel CA. Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy. ChemPhysChem. 2005;6:791–804.
Villeneuve L. Ex vivo photodynamic purging in continual myelogenous leukaemia and different neoplasias with rhodamine derivatives. Biotechnol Appl Biochem. 1999;30:1–17.
Castro DJ, Gaskin A, Saxton RE, Reisler E, Nishimura E, To SY, Rodgerson DO, Layfield LJ, Tartell PB. Photodynamic remedy utilizing rhodamine-123 as a brand new laser dye: biodistribution, metabolism and histology in New Zealand rabbits. Laryngoscope. 1991;101:158–64.
Bao B, Su P, Tune Okay, Cui Y, Zhai X, Xu Y, Liu J, Wang L. A sensible “sense-and-treat” nanoplatform primarily based on semiconducting polymer nanoparticles for exact photothermal-photodynamic mixed remedy. Biomacromol. 2021;22:1137–46.
Nguyen VN, Qi S, Kim S, Kwon N, Kim G, Yim Y, Park S, Yoon J. An rising molecular design strategy to heavy-atom-free photosensitizers for enhanced photodynamic remedy below hypoxia. J Am Chem Soc. 2019;141:16243–8.
Xue X, Qian C, Fang H, Liu H, Yuan H, Guo Z, Bai Y, He W. Photoactivated lysosomal escape of a monofunctional PtII complicated Pt-BDPA for nucleus entry. Angew Chem Int Ed. 2019;58:12661–6.
Zhang Z, Wang J, Chen C. Close to-infrared light-mediated nanoplatforms for most cancers thermo-chemotherapy and optical imaging. Adv Mater. 2013;25:3869–80.
Wen Z, Liu F, Liu G, Solar Q, Zhang Y, Muhammad M, Xu Y, Li H, Solar S. Meeting of multifunction dyes and warmth shock protein 90 inhibitor coupled to bovine serum albumin in nanoparticles for multimodal photodynamic/photothermal/chemo-therapy. J Colloid Interface Sci. 2021;590:290–300.
Tune N, Li Y, Chen L, Hu X, Xie Z. Bodipy derivatives as light-induced free radical generator for hypoxic most cancers remedy. J Mater Chem B. 2019;7:3976–81.
Rurack Okay, Kollmannsberger M, Resch-Genger U, Daub J. A selective and delicate fluoroionophore for HgII, AgI, and CuII with just about decoupled fluorophore and receptor models. J Am Chem Soc. 2000;122:968–9.
Qi X, Jun EJ, Xu L, Kim SJ, Hong JSJ, Yoon YJ, Yoon J. New BODIPY derivatives as OFF−ON fluorescent chemosensor and fluorescent chemodosimeter for Cu2+: cooperative selectivity enhancement towards Cu2+. J Org Chem. 2006;71:2881–4.
Zhu J, Zou J, Zhang Z, Zhang J, Solar Y, Dong X, Zhang Q. NIR triphenylamine grafted BODIPY by-product with excessive photothermal conversion effectivity and singlet oxygen era for imaging guided phototherapy. Mater Chem Entrance. 2019;3:1523–31.
Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science. 2012;335:1458–62.
Chen D, Zhang J, Tang Y, Huang X, Shao J, Si W, Ji J, Zhang Q, Huang W, Dong X. Tumor-mitochondria twin focused Aza-BODIPY-based nanotheranostic agent for multimodal imaging-guided phototherapy. J Mater Chem B. 2018;6:4522–30.
Liu N, Zhu M, Niu N, Ren J, Yang N, Yu C. An Aza-BODIPY probe embellished mesoporous black TiO2 nanoplatform for the extremely environment friendly synergistic phototherapy. ACS Appl Mater Interfaces. 2020;12:41071–8.
Muthu MS, Leong DT, Mei L, Feng SS. Nanotheranostics-application and additional growth of nanomedicine methods for superior theranostics. Theranostics. 2014;4:660–77.
Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive imaging of nanomedicines and nanotheranostics: rules, progress, and prospects. Chem Rev. 2015;115:10907–37.
Pu Okay, Shuhendler AJ, Jokerst JV, Mei J, Gambhir SS, Bao Z, Rao J. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in residing mice. Nat Nanotechnol. 2014;9:233–9.
Lovell JF, Liu TW, Chen J, Zheng G. Activatable photosensitizers for imaging and remedy. Chem Rev. 2010;110:2839–57.
Razgulin A, Ma N, Rao JH. Methods for in vivo imaging of enzyme exercise: an outline and up to date advances. Chem Soc Rev. 2011;40:4186–216.
Zheng X, Wang L, Liu S, Zhang W, Liu F, Xie Z. Nanoparticles of chlorin dimer with enhanced absorbance for photoacoustic imaging and phototherapy. Adv Func Mater. 2018;28:1706507.
Wang L, Qu X, Zhao Y, Weng Y, Waterhouse GIN, Yan H, Guan S, Zhou S. Exploiting single atom iron facilities in a porphyrin-like MOF for environment friendly most cancers phototherapy. ACS Appl Mater Interfaces. 2019;11:35228–37.
Lismont M, Dreesen L, Wuttke S. Metallic-organic framework nanoparticles in photodynamic remedy: present standing and views. Adv Funct Mater. 2017;27:1606314–30.
Yan N, Wang X, Lin L. Gold nanorods electrostatically binding nucleic acid probe for in vivo MicroRNA amplified detection and photoacoustic imaging-guided photothermal remedy. Adv Funct Mater. 2018;28:1800490–500.
Zhang Y, Wang L, Liu L. Engineering metallic–natural frameworks for photoacoustic imaging-guided chemo-/photothermal combinational tumor remedy. ACS Appl Mater Interfaces. 2018;10:41035–45.
Wei J, Chen X, Wang X. Polyethylene glycol phospholipids encapsulated silicon 2, 3-naphthalocyanine dihydroxide nanoparticles (SiNcOH-DSPEPEG (NH2) NPs) for single NIR laser induced most cancers mixture remedy. Chin Chem Lett. 2017;28:1290–9.
Wang D, Zhang Z, Lin L, Liu F, Wang Y, Guo Z, Li Y, Tian H, Chen X. Porphyrin-based covalent natural framework nanoparticles for photoacoustic imaging-guided photodynamic and photothermal mixture most cancers remedy. Biomaterials. 2019;223:119459.
Li C, Chen G, Zhang Y, Wu F, Wang Q. Superior fluorescence imaging know-how within the near-infrared-II window for biomedical purposes. J Am Chem Soc. 2020;142:14789–804.
Nakaseko Y, Ishizawa T, Saiura A. Fluorescence-guided surgical procedure for liver tumors. J Surg Oncol. 2018;118:324–31.
Ji Y, Jones C, Baek Y, Park GK, Kashiwagi S, Choi HS. Close to-infrared fluorescence imaging in immunotherapy. Adv Drug Deliv Rev. 2020;167:121–34.
Blanco-Colino R, Espin-Basany E. Intraoperative use of ICG fluorescence imaging to scale back the chance of anastomotic leakage in colorectal surgical procedure: a scientific assessment and meta-analysis. Tech Coloproctol. 2018;22:15–23.
Tune JT, Yang XQ, Zhang XS, Yan DM, Wang ZY, Zhao YD. Facile synthesis of gold nanospheres modified by positively charged mesoporous silica, loaded with near-infrared fluorescent dye, for in vivo X-ray computed tomography and fluorescence twin mode imaging. ACS Appl Mater Interfaces. 2015;7:17287–97.
Cao J, Chi J, Xia J, Zhang Y, Han S, Solar Y. Iodinated cyanine dyes for quick near-infrared-guided deep tissue synergistic phototherapy. ACS Appl Mater Interfaces. 2019;11:25720–9.
Lismont M, Dreesen L, Heinrichs B, Paez CA. Protoporphyrin IX-functionalised AgSiO2 core–shell nanoparticle: plasmonic enhancement of fluorescence and singlet oxygen manufacturing. Photochem Photobiol. 2016;92:247–56.
Dragan AI, Geddes CD. Metallic-enhanced fluorescence: the function of quantum yield, Q0, in enhanced fluorescence. Appl Phys Lett. 2012;100:093115.
Lu M, Kang N, Chen C, Yang L, Li Y, Hong M, Luo X, Ren L, Wang X. Plasmonic enhancement of cyanine dyes for near-infrared light-triggered photodynamic/photothermal remedy and fluorescent imaging. Nanotechnology. 2017;28:445710.
Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R. Dynamic magnetic resonance imaging of human mind exercise throughout main sensory stimulation. Proc Natl Acad Sci USA. 1992;89:5675.
Peet AC, Arvanitis TN, Auer DP, Davies NP, Hargrave D, Howe FA. The worth of magnetic resonance spectroscopy in tumour imaging. Arch Dis Youngster. 2008;93:725–7.
Manias KA, Gill SK, MacPherson L, Foster Okay, Oates A, Peet AC. Magnetic resonance imaging primarily based useful imaging in paediatric oncology. Eur J Most cancers. 2017;72:251–65.
Mi P, Kokuryo D, Cabral H, Kumagai M, Nomoto T, Aoki I, Terada Y, Kishimura A, Nishiyama N, Kataoka Okay. Hydrothermally synthesized PEGylated calcium phosphate nanoparticles incorporating Gd-DTPA for distinction enhanced MRI prognosis of stable tumors. J Management Launch. 2014;174:63–71.
Wang D, Zhang N, Jing X, Zhang Y, Xu Y, Meng L. A tumor-microenvironment totally responsive nano-platform for MRI-guided photodynamic and photothermal synergistic remedy. Journal of Supplies Chemistry B. 2020;8:8271–81.
Li M, Lin H, Qu F. FeS2@C-ICG-PEG nanostructure with intracellular O2 era for enhanced photo-dynamic/thermal remedy and imaging. Chem Eng J. 2020;384:123374.
Zhu W, Liu Y, Yang Z, Zhang L, Xiao L, Liu P, Wang J, Yi C, Xu Z, Ren J. Albumin/sulfonamides stabilized iron porphyrin metallic natural frameworks nanocomposites: focusing on tumor hypoxia by carbonic anhydrase IX inhibitor, and T1–T2 twin mode MRI guided photodynamic/photothermal remedy. J Mater Chem B. 2018;6:265–76.
Li B, Wang X, Chen L, Zhou Y, Dang W, Chang J, Wu C. Ultrathin Cu-TCPP MOF nanosheets: a brand new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers. Theranostics. 2018;8:4086–96.
Liu P, Zheng H, Yang Z, Ba L, Zhu W, Lin L, Xiong Y, Xu Z, Ren J. Facile preparation of versatile Gadolinium-chelated protein nanocomposite for T1-weighted magnetic resonance imaging guided photodynamic and photothermal synergetic remedy. J Mater Chem B. 2018;6:1688–98.
Lin X, Fang Y, Tao Z, Gao X, Wang T, Zhao M, Wang S, Liu Y. Tumor-microenvironment-induced all-in-one nanoplatform for multimodal imaging-guided chemical and photothermal remedy of most cancers. ACS Appl Mater Interfaces. 2019;11:25043–53.
Liu H, Lin W, He L, Chen T. Radiosensitive core/satellite tv for pc ternary heteronanostructure for multimodal imaging-guided synergistic most cancers radiotherapy. Biomaterials. 2020;226:119545.
Tempany CM, Jayender J, Kapur T, Bueno R, Golby A, Agar N, Jolesz FA. Multimodal imaging for improved prognosis and remedy of cancers. Most cancers. 2015;121:817–27.
Chen L, Zuo W, Xiao Z, Jin Q, Liu J, Wu L, Liu N, Zhu X. A carrier-free metal-coordinated dual-photosensitizers nanotheranostic with glutathione-depletion for fluorescence/photoacoustic imaging-guided tumor phototherapy. J Colloid Interface Sci. 2021;600:243–55.
Liu J, Zuo W, Jin Q, Liu C, Liu N, Tian H, Zhu X. Mn (II)-directed dual-photosensitizers co-assemblies for multimodal imaging-guided self-enhanced phototherapy. Mater Sci Eng C-Mater Biol Appl. 2021;129:112351.
You Q, Zhang Okay, Liu J, Liu C, Wang H, Wang M, Ye S, Gao H, Lv L, Wang C, Zhu L, Yang Y. Persistent regulation of tumor hypoxia microenvironment by way of a bioinspired Pt-based oxygen nanogenerator for multimodal imaging-guided synergistic phototherapy. Adv Sci. 2020;7:1903341.
Sheng Z, Hu D, Zheng M, Zhao P, Liu H, Gao D, Gong P, Gao G, Zhang P, Ma Y, Cai L. Sensible human serum albumin-indocyanine inexperienced nanoparticles generated by programmed meeting for dual-modal imaging-guided most cancers synergistic phototherapy. ACS Appl Mater Interfaces. 2014;8:12310–22.
Tan X, Wang J, Pang X, Liu L, Solar Q, You Q, Tan F, Li N. Indocyanine green-loaded silver nanoparticle@polyaniline core/shell theranostic nanocomposites for photoacoustic/near-infrared fluorescence imaging-guided and single-light triggered photothermal and photodynamic remedy. ACS Appl Mater Interfaces. 2016;8:34991–5003.
Liu X, Gao C, Gu J, Jiang Y, Yang X, Li S, Gao W, An T, Duan H, Fu J, Wang Y, Yang X. Hyaluronic acid stabilized iodine-containing nanoparticles with Au nanoshell coating for X-ray CT imaging and photothermal remedy of tumors. ACS Appl Mater Interfaces. 2016;8:27622–31.
Li L, Tong R, Li M, Kohane DS. Self-assembled gemcitabine-gadolinium nanoparticles for magnetic resonance imaging and most cancers remedy. Acta Biomater. 2016;33:34–9.
Deng T, Zhang L, Wu H, Zink JI. A nanoparticle enabled centered ultrasound-stimulated magnetic resonance imaging highlight. Chem Commun. 2019;55:10261–4.
Daglish J, Frisbie DD, Selberg KT, Barrett MF. Excessive discipline magnetic resonance imaging is comparable with gross anatomy for description of the traditional look of soppy tissues within the equine stifle. Vet Radiol Ultrasound. 2018;59:721–36.
Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. Intrinsic peroxidase-like exercise of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83.
Gawande MB, Branco PS, Varma RS. Nano-magnetite (Fe3O4) as a assist for recyclable catalysts within the growth of sustainable methodologies. Chem Soc Rev. 2013;42:3371–93.
Zhang Okay, Yang Z, Meng X, Cao Y, Zhang Y, Dai W, Lu H, Yu Z, Dong H, Zhang X. Peroxidase-like Fe3O4 nanocomposite for activatable reactive oxygen species era and most cancers theranostics. Mater Chem Entrance. 2018;2:1184–94.
Sunian X, Liu W, Chen L, Zhou Z, Shen D, Liu Y, Wan W. Decision enhanced photothermal imaging by high-order correlation. Decide Lett. 2020;45:5696–9.
Liu P, Ren J, Xiong Y, Yang Z, Zhu W, He Q, Xu Z, He W, Wang J. Enhancing magnetic resonance/photoluminescence imaging-guided photodynamic remedy by a number of pathways. Biomaterials. 2019;199:52–62.
Zhao R, Zheng G, Fan L, Shen Z, Jiang Okay, Guo Y, Shao J. Provider-free nanodrug by co-assembly of chemotherapeutic agent and photosensitizer for most cancers imaging and chemo-photo mixture remedy. Acta Biomater. 2018;70:197–210.
Ma J, Chen D, Li Y, Chen Y, Liu Q, Zhou X, Qian Okay, Li Z, Ruan H, Hou Z, Zhu X. Zinc phthalocyanine-soybean phospholipid complicated primarily based drug service for switchable photoacoustic/fluorescence picture, multiphase photothermal/photodynamic remedy and synergetic remedy. J Management Launch. 2018;284:1–14.
Yang R, Hou M, Gao Y, Lu S, Zhang L, Xu Z, Li C, Kang Y, Xue P. Biomineralization-inspired crystallization of manganese oxide on silk fibroin nanoparticles for in vivo MR/fluorescence imaging-assisted tri-modal remedy of most cancers. Theranostics. 2019;9:6314–33.
Shen T, Zhang Y, Kirillov AM, Hu B, Shan C, Liu W, Tang Y. Versatile rare-earth oxide nanocomposites: enhanced chemo/photothermal/photodynamic anticancer remedy and multimodal imaging. J Mater Chem B. 2016;4:7832–44.
Chen SC, Wu YC, Mi FL, Lin YH, Yu LC, Sung HW. A novel pH-sensitive hydrogel composed of N O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug supply. J Management Launch. 2004;96:285–300.
Xia X, Yang M, Oetjen LK, Zhang Y, Li Q, Chen J, Xia Y. An enzyme-sensitive probe for photoacoustic imaging and fluorescence detection of protease exercise. Nanoscale. 2011;3:950–3.
Saito G, Swanson JA, Lee KD. Drug supply technique using conjugation by way of reversible disulfide linkages: function and web site of mobile lowering actions. Adv Drug Deliv Rev. 2003;55:199–215.
Feng Q, Zhang Y, Zhang W, Shan X, Yuan Y, Zhang H, Hou L, Zhang Z. Tumor-targeted and multi-stimuli responsive drug supply system for nearinfrared gentle induced chemo-phototherapy and photoacoustic tomography. Acta Biomater. 2016;38:129–42.
He CL, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug supply. J Management Launch. 2008;127:189–207.
Rapoport NY, Kennedy AM, Shea JE, Scaife CL, Nam KH. Managed and focused tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Management Launch. 2009;138:268–76.
Pankhurst QA, Connolly J, Jones SK, Dobson J. Functions of magnetic nanoparticles in biomedicine. J Phys D-Appl Phys. 2003;36:R167–81.
Dube T, Kumar N, Bishnoi M, Panda JJ. Twin blood-brain barrier-glioma focusing on peptide-poly(levodopamine) hybrid nanoplatforms as potential close to infrared phototheranostic brokers in glioblastoma. Bioconjug Chem. 2021;32:2014–31.
Yu Okay, Hai X, Yue S, Tune W, Bi S. Glutathione-activated DNA-Au nanomachine as focused drug supply platform for imaging-guided combinational most cancers remedy. Chem Eng J. 2021;419:129535.
Wang Y, Xie D, Pan J, Xia C, Fan L, Pu Y, Zhang Q, Ni YH, Wang J, Hu Q. A close to infrared light-triggered human serum albumin drug supply system with coordination bonding of indocyanine inexperienced and cisplatin for focusing on photochemistry remedy towards oral squamous cell most cancers. Biomater Sci. 2019;7:5270–82.
Wan G, Chen B, Li L, Wang D, Shi S, Zhang T, Wang Y, Zhang L, Wang Y. Nanoscaled crimson blood cells facilitate breast most cancers remedy by combining photothermal/photodynamic remedy and chemotherapy. Biomaterials. 2018;155:25–40.
Wan J, Solar L, Wu P, Wang F, Guo J, Cheng J, Wang C. Synthesis of indocyanine inexperienced functionalized comblike poly (aspartic acid) derivatives for enhanced most cancers cell ablation by focusing on endoplasmic reticulum. Polym Chem. 2018;9:1206–15.
Zhan X, Nie X, Gao F, Zhang C, You YZ, Yu Y. NIR-activated polymeric nanoplatform with ROS- and temperature-sensitive for mixed photothermal and chemotherapy on pancreatic most cancers. Biomater Sci. 2020;8:5931–40.
Zhang X, Luo L, Li L, He Y, Cao W, Liu H, Niu Okay, Gao D. Trimodal synergistic antitumor drug supply system primarily based on graphene oxide. Nanomed Nanotechnol Biol Med. 2018;15:142–52.
Wu H, Wang C, Solar J, Solar L, Wan J, Wang S, Gu D, Yu C, Yang C, He J, Zhang Z, Lv Y, Wang H, Yao M, Qin W, Wang C, Jin H. Self-assembled and self-monitored sorafenib/indocyanine inexperienced nanodrug with synergistic antitumor exercise mediated by hyperthermia and ROS-induced apoptosis. ACS Appl Mater Interfaces. 2019;11:43996–4006.
Ravichandran V, Cao TGN, Choi DG, Kang HC, Shim MS. Non-ionic polysorbate-based nanoparticles for environment friendly mixture chemo/photothermal/photodynamic remedy. J Ind Eng Chem. 2020;88:260–7.
Liu Y, Lin Y, Liu H, Wang Y, Wang Y, Shi R, Jiang X, Feng Y, Meng S. Synergistic PDT/PTT/chemotherapy of PEGylated cyanine/methotrexate hybrid nanoparticles. Mater Lett. 2022;317:131957.
An N, Lin H, Qu F. The synthesis of GNRs@mSiO2-ICG-DOX@Se-SeFA nanocomposite for managed chemo-/photothermal/ photodynamic remedy. Eur J Inorg Chem. 2018;39:4375–84.
Yu W, Xue X, Ma AH, Ruan Y, Zhang H, Cheng F, Li Y, Pan CX, Lin TY. Self-assembled nanoparticle-mediated chemophototherapy reverses the drug resistance of bladder cancers via twin AKT/ERK inhibition. Adv Therap. 2020;3:2000032.
Guan S, Weng Y, Li M, Liang R, Solar C, Qu X, Zhou S. An NIR-sensitive layered supramolecular nanovehicle for mixed dual-modal imaging and synergistic remedy. Nanoscale. 2017;9:10367–74.
Yang R, Hou M, Gao Y, Zhang L, Xu Z, Kang Y, Xue P. Indocyanine green-modified hole mesoporous prussian blue nanoparticles loading doxorubicin for fluorescence-guided tri-modal mixture remedy of most cancers. Nanoscale. 2019;11:5717–31.
Yi Y, Wang H, Wang X, Liu Q, Ye M, Tan W. Photocontrollable drug launch nanosystem for multifunctional synergistic most cancers remedy. ACS Appl Mater Interfaces. 2017;9:5847–54.
Wu H, You C, Chen F, Jiao J, Gao Z, An P, Solar B, Chen R. Enhanced mobile uptake of near-infrared triggered focused nanoparticles by cell-penetrating peptide TAT for mixed chemo/photothermal/photodynamic remedy. Mater Sci Eng C. 2019;103:109738.
Yu Y, Zhang Z, Wang Y, Zhu H, Li F, Shen Y, Guo S. A brand new NIR-triggered DOX and ICG co-delivery system for enhanced multidrug resistant most cancers remedy via simultaneous chemo/photothermal/photodynamic remedy. Acta Biomater. 2017;59:170–80.
Li T, Zhou J, Wang L, Zhang H, Tune C, de la Fuente JM, Pan Y, Tune J, Zhang C, Cui D. Photograph-fenton-like metal-protein self-assemblies as multifunctional tumor theranostic agent. Adv Healthcare Mater. 2019;8:1900192.
Chen Y, Li H, Deng Y, Solar H, Ke X, Ci T. Close to-infrared gentle triggered drug supply system for larger efficacy of mixed chemo-photothermal remedy. Acta Biomater. 2016;51:374–92.
Yuan Y, Liu J, Yu X, Liu X, Cheng Y, Zhou C, Li M, Shi L, Deng Y, Liu H, Wang G, Wang L, Wang Z. Tumor-targeting pH/redox dual-responsive nanosystem epigenetically reverses most cancers drug resistance by co-delivering doxorubicin and GCN5 siRNA. Acta Biomater. 2021;135:556–66.
Skrabalak SE, Chen J, Au L, Lu X, Li X, Xia YN. Gold nanocages for biomedical purposes. Adv Mater. 2007;19:3177–84.
Xia YN, Li WY, Cobley CM, Chen JY, Xia XH, Zhang Q, Yang MX, Cho EC, Brown PK. Gold nanocages: from synthesis to theranostic purposes. Acc Chem Res. 2011;44:914–24.
Chen JY, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Welch MJ, Xia YN. Gold nanocages as photothermal transducers for most cancers remedy. Small. 2010;6:811–7.
Spring BQ, Rizvi I, Xu N, Hasan T. The function of photodynamic remedy in overcoming most cancers drug resistance. Photochem Photobiol Sci. 2015;14:1476.
Sheng Z, Hu D, Xue M, He M, Gong P, Cai L. Indocyanine inexperienced nanoparticles for theranostic purposes. Nano-Micro Lett. 2013;5:145–50.
Bilicia Okay, Mutib A, Sennaroğlua A, Acar HY. Indocyanine inexperienced loaded APTMS coated SPIONs for twin phototherapy of most cancers. J Photochem Photobiol B. 2019;201:111648.
Oh J, Yoon HJ, Park JH. Plasmonic liposomes for synergistic photodynamic and photothermal remedy. J Mater Chem B. 2014;2:2592.
[ad_2]