Exosome, the glass slipper for Cinderella of most cancers—bladder most cancers? | Journal of Nanobiotechnology

[ad_1]

  • Farooqi AA, Desai NN, Qureshi MZ, Librelotto DRN, Gasparri ML, Bishayee A, Nabavi SM, Curti V, Daglia M. Exosome biogenesis, bioactivities and capabilities as new supply programs of pure compounds. Biotechnol Adv. 2018;36(1):328–34. https://doi.org/10.1016/j.biotechadv.2017.12.010.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trams EG, Lauter CJ, Salem N Jr, Heine U. Exfoliation of membrane ecto-enzymes within the type of micro-vesicles. Biochim Biophys Acta. 1981;645(1):63–70. https://doi.org/10.1016/0005-2736(81)90512-5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thery C, Witwer KW, Aikawa E, et al. Minimal data for research of extracellular vesicles 2018 (MISEV2018): a place assertion of the Worldwide Society for Extracellular Vesicles and replace of the MISEV2014 pointers. J Extracell Vesicles. 2018;7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750.PMID:30637094;PMCID:PMC6322352.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, objective, and strategies for exosome isolation and evaluation. Cells. 2019;8(7):727. https://doi.org/10.3390/cells8070727.PMID:31311206;PMCID:PMC6678302.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li B, Cao Y, Solar M, Feng H. Expression, regulation, and performance of exosome-derived miRNAs in most cancers development and remedy. FASEB J. 2021;35(10): e21916. https://doi.org/10.1096/fj.202100294RR.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: a evaluate of its classification, isolation strategies, storage, diagnostic and focused remedy purposes. Int J Nanomedicine. 2020;22(15):6917–34. https://doi.org/10.2147/IJN.S264498.PMID:33061359;PMCID:PMC7519827.

    Article 

    Google Scholar
     

  • Van Hemelrijck M, Patel P, Mouw KW. Editorial: bladder most cancers—a cinderella most cancers: advances and remaining analysis questions. Entrance Oncol. 2020;4(10):1749. https://doi.org/10.3389/fonc.2020.01749.PMID:33014863;PMCID:PMC7499472.

    Article 

    Google Scholar
     

  • Oliveira MC, Caires HR, Oliveira MJ, Fraga A, Vasconcelos MH, Ribeiro R. Urinary biomarkers in bladder most cancers: the place can we stand and potential position of extracellular vesicles. Cancers. 2020;12(6):1400. https://doi.org/10.3390/cancers12061400.PMID:32485907;PMCID:PMC7352974.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Georgantzoglou N, Pergaris A, Masaoutis C, Theocharis S. Extracellular vesicles as biomarkers carriers in bladder most cancers: prognosis, surveillance, and therapy. Int J Mol Sci. 2021;22(5):2744. https://doi.org/10.3390/ijms22052744.PMID:33803085;PMCID:PMC7963171.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mashouri L, Yousefi H, Aref AR, Ahadi AM, Molaei F, Alahari SK. Exosomes: composition, biogenesis, and mechanisms in most cancers metastasis and drug resistance. Mol Most cancers. 2019;18(1):75. https://doi.org/10.1186/s12943-019-0991-5.PMID:30940145;PMCID:PMC6444571.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huotari J, Helenius A. Endosome maturation. EMBO J. 2011;30(17):3481–500. https://doi.org/10.1038/emboj.2011.286.PMID:21878991;PMCID:PMC3181477.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Sign. 2021;19(1):47. https://doi.org/10.1186/s12964-021-00730-1.PMID:33892745;PMCID:PMC8063428.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan BT, Johnstone RM. Destiny of the transferrin receptor throughout maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33(3):967–78. https://doi.org/10.1016/0092-8674(83)90040-5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt O, Teis D. The ESCRT equipment. Curr Biol. 2012;22(4):R116–20. https://doi.org/10.1016/j.cub.2012.01.028.PMID:22361144;PMCID:PMC3314914.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Niel G, Porto-Carreiro I, Simoes S, Raposo G. Exosomes: a typical pathway for a specialised operate. J Biochem. 2006;140(1):13–21. https://doi.org/10.1093/jb/mvj128.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wollert T, Wunder C, Lippincott-Schwartz J, Hurley JH. Membrane scission by the ESCRT-III advanced. Nature. 2009;458(7235):172–7. https://doi.org/10.1038/nature07836.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCullough J, Frost A, Sundquist WI. Constructions, Features, and Dynamics of ESCRT-III/Vps4 Membrane Reworking and Fission Complexes. Annu Rev Cell Dev Biol. 2018;6(34):85–109. https://doi.org/10.1146/annurev-cellbio-100616-060600.

    Article 
    CAS 

    Google Scholar
     

  • Mathieu J, Michel-Hissier P, Boucherit V, Huynh JR. The deubiquitinase USP8 targets ESCRT-III to advertise incomplete cell division. Science. 2022;376(6595):818–23. https://doi.org/10.1126/science.Abg2653.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morita E, Sandrin V, Chung HY, Morham SG, Gygi SP, Rodesch CK, Sundquist WI. Human ESCRT and ALIX proteins work together with proteins of the midbody and performance in cytokinesis. EMBO J. 2007;26(19):4215–27. https://doi.org/10.1038/sj.emboj.7601850.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E, Raposo G. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting throughout melanogenesis. Dev Cell. 2011;21(4):708–21. https://doi.org/10.1016/j.devcel.2011.08.019.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M, Sánchez-Madrid F. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes by binding to particular motifs. Nat Commun. 2013;4:2980. https://doi.org/10.1038/ncomms3980.PMID:24356509;PMCID:PMC3905700.

    Article 
    PubMed 

    Google Scholar
     

  • Rana S, Zöller M. Exosome goal cell choice and the significance of exosomal tetraspanins: a speculation. Biochem Soc Trans. 2011;39(2):559–62. https://doi.org/10.1042/BST0390559.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalluri R, LeBleu VS. The biology, operate, and biomedical purposes of exosomes. Science. 2020;367(6478):6977. https://doi.org/10.1126/science.aau6977.

    Article 
    CAS 

    Google Scholar
     

  • Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and different extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9–17. https://doi.org/10.1038/s41556-018-0250-9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yue B, Yang H, Wang J, Ru W, Wu J, Huang Y, Lan X, Lei C, Chen H. Exosome biogenesis, secretion and performance of exosomal miRNAs in skeletal muscle myogenesis. Cell Prolif. 2020;53(7):e12857. https://doi.org/10.1111/cpr.12857.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu Y, Wang Y, Chen T, Hao Z, Cai L, Li J. Exosome: operate and software in inflammatory bone ailments. Oxid Med Cell Longev. 2021;31(2021):6324912. https://doi.org/10.1155/2021/6324912.PMID:34504641;PMCID:PMC8423581.

    Article 

    Google Scholar
     

  • Mendt M, Kamerkar S, Sugimoto H, McAndrews KM, Wu CC, Gagea M, Yang S, Blanko EVR, Peng Q, Ma X, Marszalek JR, Maitra A, Yee C, Rezvani Okay, Shpall E, LeBleu VS, Kalluri R. Era and testing of clinical-grade exosomes for pancreatic most cancers. JCI Perception. 2018;3(8): e99263. https://doi.org/10.1172/jci.perception.99263.PMID:29669940;PMCID:PMC5931131.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu X, Badawi M, Pomeroy S, Sutaria DS, Xie Z, Baek A, Jiang J, Elgamal OA, Mo X, Perle Okay, Chalmers J, Schmittgen TD, Phelps MA. Complete toxicity and immunogenicity research reveal minimal results in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. J Extracell Vesicles. 2017;6(1):1324730. https://doi.org/10.1080/20013078.2017.1324730.PMID:28717420;PMCID:PMC5505007.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wahlund CJE, Güclüler G, Hiltbrunner S, Veerman RE, Näslund TI, Gabrielsson S. Exosomes from antigen-pulsed dendritic cells induce stronger antigen-specific immune responses than microvesicles in vivo. Sci Rep. 2017;7(1):17095. https://doi.org/10.1038/s41598-017-16609-6.PMID:29213052;PMCID:PMC5719080.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nandakumar R, Tschismarov R, Meissner F, Prabakaran T, Krissanaprasit A, Farahani E, Zhang BC, Assil S, Martin A, Bertrams W, Holm CK, Ablasser A, Klause T, Thomsen MK, Schmeck B, Howard KA, Henry T, Gothelf KV, Decker T, Paludan SR. Intracellular micro organism have interaction a STING-TBK1-MVB12b pathway to allow paracrine cGAS-STING signalling. Nat Microbiol. 2019;4(4):701–13. https://doi.org/10.1038/s41564-019-0367-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, Breakefield XO, Skog JK. Exosome-based liquid biopsies in most cancers: alternatives and challenges. Ann Oncol. 2021;32(4):466–77. https://doi.org/10.1016/j.annonc.2021.01.074.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stefanius Okay, Servage Okay, de Souza SM, Grey HF, Toombs JE, Chimalapati S, Kim MS, Malladi VS, Brekken R, Orth Okay. Human pancreatic most cancers cell exosomes, however not human regular cell exosomes, act as an initiator in cell transformation. Elife. 2019;28(8): e40226. https://doi.org/10.7554/eLife.40226.PMID:31134894;PMCID:PMC6538373.

    Article 

    Google Scholar
     

  • Le MT, Hamar P, Guo C, Basar E, Perdigão-Henriques R, Balaj L, Lieberman J. miR-200-containing extracellular vesicles promote breast most cancers cell metastasis. J Clin Make investments. 2014;124(12):5109–28. https://doi.org/10.1172/JCI75695.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spencer B, Kim C, Gonzalez T, Bisquertt A, Patrick C, Rockenstein E, Adame A, Lee SJ, Desplats P, Masliah E. α-Synuclein interferes with the ESCRT-III advanced contributing to the pathogenesis of Lewy physique illness. Hum Mol Genet. 2016;25(6):1100–15. https://doi.org/10.1093/hmg/ddv633.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao Y, Qin Y, Wan C, Solar Y, Meng J, Huang J, Hu Y, Jin H, Yang Okay. Small extracellular vesicles: a novel avenue for most cancers administration. Entrance Oncol. 2021;15(11): 638357. https://doi.org/10.3389/fonc.2021.638357.PMID:33791224;PMCID:PMC8005721.

    Article 

    Google Scholar
     

  • Zhao S, Wu M, Yang S, Wu Y, Gu Y, Chen C, Ye J, Xie Z, Tian Z, Bachman H, Huang PH, Xia J, Zhang P, Zhang H, Huang TJ. A disposable acoustofluidic chip for nano/microparticle separation utilizing unidirectional acoustic transducers. Lab Chip. 2020;20(7):1298–308. https://doi.org/10.1039/d0lc00106f.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong Q, Han Z, Tian L. Identification of serum exosome-derived circRNA-miRNA-TF-mRNA regulatory community in postmenopausal osteoporosis utilizing bioinformatics evaluation and validation in peripheral blood-derived mononuclear cells. Entrance Endocrinol. 2022;9(13): 899503. https://doi.org/10.3389/fendo.2022.899503.PMID:35757392;PMCID:PMC9218277.

    Article 

    Google Scholar
     

  • Chen J, Li P, Zhang T, Xu Z, Huang X, Wang R, Du L. Evaluation on methods and applied sciences for exosome isolation and purification. Entrance Bioeng Biotechnol. 2022;5(9): 811971. https://doi.org/10.3389/fbioe.2021.811971.PMID:35071216;PMCID:PMC8766409.

    Article 

    Google Scholar
     

  • Zhu F, Chong Lee Shin OLS, Pei G, Hu Z, Yang J, Zhu H, Wang M, Mou J, Solar J, Wang Y, Yang Q, Zhao Z, Xu H, Gao H, Yao W, Luo X, Liao W, Xu G, Zeng R, Yao Y. Adipose-derived mesenchymal stem cells employed exosomes to attenuate AKI-CKD transition by tubular epithelial cell dependent Sox9 activation. Oncotarget. 2017;8(41):70707–26. https://doi.org/10.18632/oncotarget.19979.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and supply automobiles throughout organic membranes: present views and future challenges. Acta Pharm Sin B. 2016;6(4):287–96. https://doi.org/10.1016/j.apsb.2016.02.001.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barile L, Vassalli G. Exosomes: remedy supply instruments and biomarkers of ailments. Pharmacol Ther. 2017;174:63–78. https://doi.org/10.1016/j.pharmthera.2017.02.020.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stickney Z, Losacco J, McDevitt S, Zhang Z, Lu B. Growth of exosome floor show know-how in residing human cells. Biochem Biophys Res Commun. 2016;472(1):53–9. https://doi.org/10.1016/j.bbrc.2016.02.058.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kooijmans SA, Aleza CG, Roffler SR, van Solinge WW, Vader P, Schiffelers RM. Show of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell concentrating on. J Extracell Vesicles. 2016;14(5):31053. https://doi.org/10.3402/jev.v5.31053.PMID:26979463;PMCID:PMC4793259.

    Article 

    Google Scholar
     

  • Ohno S, Takanashi M, Sudo Okay, Ueda S, Ishikawa A, Matsuyama N, Fujita Okay, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M. Systemically injected exosomes focused to EGFR ship antitumor microRNA to breast most cancers cells. Mol Ther. 2013;21(1):185–91. https://doi.org/10.1038/mt.2012.180.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rountree RB, Mandl SJ, Nachtwey JM, Dalpozzo Okay, Do L, Lombardo JR, Schoonmaker PL, Brinkmann Okay, Dirmeier U, Laus R, Delcayre A. Exosome concentrating on of tumor antigens expressed by most cancers vaccines can enhance antigen immunogenicity and therapeutic efficacy. Most cancers Res. 2011;71(15):5235–44. https://doi.org/10.1158/0008-5472.CAN-10-4076.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Dongen HM, Masoumi N, Witwer KW, Pegtel DM. Extracellular vesicles exploit viral entry routes for cargo supply. Microbiol Mol Biol Rev. 2016;80(2):369–86. https://doi.org/10.1128/MMBR.00063-15.PMID:26935137;PMCID:PMC4867369.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng Y, Schorey JS. Focusing on soluble proteins to exosomes utilizing a ubiquitin tag. Biotechnol Bioeng. 2016;113(6):1315–24. https://doi.org/10.1002/bit.25884.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sterzenbach U, Putz U, Low LH, Silke J, Tan SS, Howitt J. Engineered exosomes as automobiles for biologically lively proteins. Mol Ther. 2017;25(6):1269–78. https://doi.org/10.1016/j.ymthe.2017.03.030.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Gassart A, Geminard C, Fevrier B, Raposo G, Vidal M. Lipid raft-associated protein sorting in exosomes. Blood. 2003;102(13):4336–44. https://doi.org/10.1182/blood-2003-03-0871.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jafari D, Shajari S, Jafari R, Mardi N, Gomari H, Ganji F, Forouzandeh Moghadam M, Samadikuchaksaraei A. Designer exosomes: a brand new platform for biotechnology therapeutics. BioDrugs. 2020;34(5):567–86. https://doi.org/10.1007/s40259-020-00434-x.PMID:32754790;PMCID:PMC7402079.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luan X, Sansanaphongpricha Okay, Myers I, Chen H, Yuan H, Solar D. Engineering exosomes as refined organic nanoplatforms for drug supply. Acta Pharmacol Sin. 2017;38(6):754–63. https://doi.org/10.1038/aps.2017.12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleshner NE, Herr HW, Stewart AK, Murphy GP, Mettlin C, Menck HR. The nationwide most cancers knowledge base report on bladder carcinoma. The american faculty of surgeons fee on most cancers and the american most cancers society. Most cancers. 1996;78(7):1505–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kirkali Z, Chan T, Manoharan M, Algaba F, Busch C, Cheng L, Kiemeney L, Kriegmair M, Montironi R, Murphy WM, Sesterhenn IA, Tachibana M, Weider J. Bladder most cancers: epidemiology, staging and grading, and prognosis. Urology. 2005;66(6 Suppl 1):4–34. https://doi.org/10.1016/j.urology.2005.07.062.

    Article 
    PubMed 

    Google Scholar
     

  • Nadal R, Bellmunt J. Administration of metastatic bladder most cancers. Most cancers Deal with Rev. 2019;76:10–21. https://doi.org/10.1016/j.ctrv.2019.04.002.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alifrangis C, McGovern U, Freeman A, Powles T, Linch M. Molecular and histopathology directed remedy for superior bladder most cancers. Nat Rev Urol. 2019;16(8):465–83. https://doi.org/10.1038/s41585-019-0208-0.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin F, Yin HB, Li XY, Zhu GM, He WY, Gou X. Bladder most cancers cell-secreted exosomal miR-21 prompts the PI3K/AKT pathway in macrophages to advertise most cancers development. Int J Oncol. 2020;56(1):151–64. https://doi.org/10.3892/ijo.2019.4933.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu JH, Solar KN, Chen ZH, He YJ, Sheng L. Exosome-mediated miR-4792 switch promotes bladder most cancers cell proliferation through enhanced FOXC1/c-Myc signaling and warburg impact. J Oncol. 2022;19(2022):5680353. https://doi.org/10.1155/2022/5680353.PMID:35096062;PMCID:PMC8791735.

    Article 

    Google Scholar
     

  • Liu T, Zhang Q, Zhang J, Li C, Miao YR, Lei Q, Li Q, Guo AY. EVmiRNA: a database of miRNA profiling in extracellular vesicles. Nucleic Acids Res. 2019;47(D1):D89–93. https://doi.org/10.1093/nar/gky985.PMID:30335161;PMCID:PMC6323938.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai H, Li Y, Zhang H, Hu J, Liao J, Su Y, Li Q, Chen B, Li C, Wang Z, Li Y, Wang J, Meng Z, Huang Z, Huang S. exoRBase 2.0: an atlas of mRNA, lncRNA and circRNA in extracellular vesicles from human biofluids. Nucleic Acids Res. 2022;50(1):118–28. https://doi.org/10.1093/nar/gkab1085.

    Article 
    CAS 

    Google Scholar
     

  • Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao Okay, Samuel M, Pathan M, Jois M, Chilamkurti N, Gangoda L, Mathivanan S. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol. 2016;428(4):688–92. https://doi.org/10.1016/j.jmb.2015.09.019.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • EV-TRACK Consortium; Van Deun J, Mestdagh P, Agostinis P, Akay Ö, Anand S, Anckaert J, Martinez ZA, Baetens T, Beghein E, Bertier L, Berx G, Boere J, Boukouris S, Bremer M, Buschmann D, Byrd JB, Casert C, Cheng L, Cmoch A, Daveloose D, De Smedt E, Demirsoy S, Depoorter V, Dhondt B, Driedonks TA, Dudek A, Elsharawy A, Floris I, Foers AD, Gärtner Okay, Garg AD, Geeurickx E, Gettemans J, Ghazavi F, Giebel B, Kormelink TG, Hancock G, Helsmoortel H, Hill AF, Hyenne V, Kalra H, Kim D, Kowal J, Kraemer S, Leidinger P, Leonelli C, Liang Y, Lippens L, Liu S, Lo Cicero A, Martin S, Mathivanan S, Mathiyalagan P, Matusek T, Milani G, Monguió-Tortajada M, Mus LM, Muth DC, Németh A, Nolte-’t Hoen EN, O’Driscoll L, Palmulli R, Pfaffl MW, Primdal-Bengtson B, Romano E, Rousseau Q, Sahoo S, Sampaio N, Samuel M, Scicluna B, Soen B, Steels A, Swinnen JV, Takatalo M, Thaminy S, Théry C, Tulkens J, Van Audenhove I, van der Grein S, Van Goethem A, van Herwijnen MJ, Van Niel G, Van Roy N, Van Vliet AR, Vandamme N, Vanhauwaert S, Vergauwen G, Verweij F, Wallaert A, Wauben M, Witwer KW, Zonneveld MI, De Wever O, Vandesompele J, Hendrix A. EV-TRACK: clear reporting and centralizing information in extracellular vesicle analysis. Nat Strategies. 2017;14(3):228–32. https://doi.org/10.1038/nmeth.4185.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saverimuttu SCC, Kramarz B, Rodríguez-López M, Garmiri P, Attrill H, Thurlow KE, Makris M, de Miranda PS, Orchard S, Lovering RC. Gene ontology curation of the blood-brain barrier to enhance the evaluation of Alzheimer’s and different neurological ailments. Database. 2021. https://doi.org/10.1093/database/baab067.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalra H, Drummen GP, Mathivanan S. Deal with extracellular vesicles: introducing the following small massive factor. Int J Mol Sci. 2016;17(2):170. https://doi.org/10.3390/ijms17020170.PMID:26861301;PMCID:PMC4783904.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA. 2004;101(36):13368–73. https://doi.org/10.1073/pnas.0403453101.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li JR, Tong CY, Sung TJ, Kang TY, Zhou XJ, Liu CC. CMEP: a database for circulating microRNA expression profiling. Bioinformatics. 2019;35(17):3127–32. https://doi.org/10.1093/bioinformatics/btz042.PMID:30668638;PMCID:PMC7963074.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russo F, Di Bella S, Vannini F, Berti G, Scoyni F, Prepare dinner HV, Santos A, Nigita G, Bonnici V, Laganà A, Geraci F, Pulvirenti A, Giugno R, De Masi F, Belling Okay, Jensen LJ, Brunak S, Pellegrini M, Ferro A. miRandola 2017: a curated information base of non-invasive biomarkers. Nucleic Acids Res. 2018;46(D1):D354–9. https://doi.org/10.1093/nar/gkx854.PMID:29036351;PMCID:PMC5753291.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Welton JL, Khanna S, Giles PJ, Brennan P, Brewis IA, Staffurth J, Mason MD, Clayton A. Proteomics evaluation of bladder most cancers exosomes. Mol Cell Proteomics. 2010;9(6):1324–38. https://doi.org/10.1074/mcp.M000063-MCP201.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeppesen DK, Nawrocki A, Jensen SG, Thorsen Okay, Whitehead B, Howard KA, Dyrskjøt L, Ørntoft TF, Larsen MR, Ostenfeld MS. Quantitative proteomics of fractionated membrane and lumen exosome proteins from isogenic metastatic and nonmetastatic bladder most cancers cells reveal differential expression of EMT components. Proteomics. 2014;14(6):699–712. https://doi.org/10.1002/pmic.201300452.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andreu Z, Otta Oshiro R, Redruello A, López-Martín S, Gutiérrez-Vázquez C, Morato E, Marina AI, Olivier Gómez C, Yáñez-Mó M. Extracellular vesicles as a supply for non-invasive biomarkers in bladder most cancers development. Eur J Pharm Sci. 2017;15(98):70–9. https://doi.org/10.1016/j.ejps.2016.10.008.

    Article 
    CAS 

    Google Scholar
     

  • Berrondo C, Flax J, Kucherov V, Siebert A, Osinski T, Rosenberg A, Fucile C, Richheimer S, Beckham CJ. Expression of the lengthy non-coding RNA HOTAIR correlates with illness development in bladder most cancers and is contained in bladder most cancers affected person urinary exosomes. PLoS ONE. 2016;11(1): e0147236. https://doi.org/10.1371/journal.pone.0147236.PMID:26800519;PMCID:PMC4723257.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumari N, Saxena S, Agrawal U. Exosomal protein interactors as rising therapeutic targets in urothelial bladder most cancers. J Egypt Natl Canc Inst. 2015;27(2):51–8. https://doi.org/10.1016/j.jnci.2015.02.002.

    Article 
    PubMed 

    Google Scholar
     

  • Xu Y, Zhang P, Tan Y, Jia Z, Chen G, Niu Y, Xiao J, Solar S, Zhang X. A possible panel of 5 mRNAs in urinary extracellular vesicles for the detection of bladder most cancers. Transl Androl Urol. 2021;10(2):809–20. https://doi.org/10.21037/tau-20-1057.PMID:33718082;PMCID:PMC7947455.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang X, Ye T, Liu H, Lv P, Duan C, Wu X, Jiang Okay, Lu H, Xia D, Peng E, Chen Z, Tang Okay, Ye Z. Expression profiles, organic capabilities and scientific significance of circRNAs in bladder most cancers. Mol Most cancers. 2021;20(1):4. https://doi.org/10.1186/s12943-020-01300-8.PMID:33397425;PMCID:PMC7780637.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng R, Du M, Wang X, Xu W, Liang J, Wang W, Lv Q, Qin C, Chu H, Wang M, Yuan L, Qian J, Zhang Z. Exosome-transmitted lengthy non-coding RNA PTENP1 suppresses bladder most cancers development. Mol Most cancers. 2018;17(1):143. https://doi.org/10.1186/s12943-018-0880-3.PMID:30285771;PMCID:PMC6169076.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu SC, Cao YH, Chen LB, Kang R, Huang ZX, Lu XS. BMSC-derived exosomal lncRNA PTENP1 suppresses the malignant phenotypes of bladder most cancers by upregulating SCARA5 expression. Most cancers Biol Ther. 2022;23(1):1–13. https://doi.org/10.1080/15384047.2022.2102360.PMID:35998226;PMCID:PMC9415615.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang Z, Zhang Y, Zhang Y, Jia Z, Zhang Z, Yang J. Most cancers derived exosomes induce macrophages immunosuppressive polarization to advertise bladder most cancers development. Cell Commun Sign. 2021;19(1):93. https://doi.org/10.1186/s12964-021-00768-1.PMID:34521440;PMCID:PMC8439012.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin X, Zheng X, Liu M, Wang D, Solar H, Qiu Y, Chen J, Shi B. Exosomal miR-663b targets Ets2-repressor issue to advertise proliferation and the epithelial-mesenchymal transition of bladder most cancers cells. Cell Biol Int. 2020;44(4):958–65. https://doi.org/10.1002/cbin.11292.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai X, Qu L, Yang J, Xu J, Solar L, Wei X, Qu X, Bai T, Guo Z, Zhu Y. Exosome-transmitted microRNA-133b inhibited bladder most cancers proliferation by upregulating dual-specificity protein phosphatase 1. Most cancers Med. 2020;9(16):6009–19. https://doi.org/10.1002/cam4.3263.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang CS, Ho JY, Chiang JH, Yu CP, Yu DS. Exosome-Derived LINC00960 and LINC02470 promote the epithelial-mesenchymal transition and aggressiveness of bladder most cancers cells. Cells. 2020;9(6):1419. https://doi.org/10.3390/cells9061419.PMID:32517366;PMCID:PMC7349410.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Q, Huyan T, Cai S, Huang Q, Zhang M, Peng H, Zhang Y, Liu N, Zhang W. The position of exosomal miR-375-3p: a possible suppressor in bladder most cancers through the Wnt/β-catenin pathway. FASEB J. 2020;34(9):12177–96. https://doi.org/10.1096/fj.202000347R.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang H, Qu H, Huang H, Mu Z, Mao M, Xie Q, Wang Okay, Hu B. Exosomes-mediated switch of lengthy noncoding RNA LINC01133 represses bladder most cancers development through regulating the Wnt signaling pathway. Cell Biol Int. 2021;45(7):1510–22. https://doi.org/10.1002/cbin.11590.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin H, Shi X, Li H, Hui J, Liu R, Chen Z, Lu Y, Tan W. Urinary Exosomal miRNAs as biomarkers of bladder Most cancers and experimental verification of mechanism of miR-93-5p in bladder Most cancers. BMC Most cancers. 2021;21(1):1293. https://doi.org/10.1186/s12885-021-08926-x.PMID:34861847;PMCID:PMC8641206.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomiyama E, Fujita Okay, Matsuzaki Okay, Narumi R, Yamamoto A, Uemura T, Yamamichi G, Koh Y, Matsushita M, Hayashi Y, Hashimoto M, Banno E, Kato T, Hatano Okay, Kawashima A, Uemura M, Ukekawa R, Takao T, Takada S, Uemura H, Adachi J, Tomonaga T, Nonomura N. EphA2 on urinary extracellular vesicles as a novel biomarker for bladder most cancers prognosis and its impact on the invasiveness of bladder most cancers. Br J Most cancers. 2022;127(7):1312–23. https://doi.org/10.1038/s41416-022-01860-0.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen Y, Ye H, Zhang D, Yang M, Ji Y, Tang L, Zhu X, Yuan L. The position of exosomal CDC6 within the hirudin-mediated suppression of the malignant phenotype of bladder most cancers cells. Gene. 2022;821:146269. https://doi.org/10.1016/j.gene.2022.146269.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rabbani F, Cordon-Cardo C. Mutation of cell cycle regulators and their influence on superficial bladder most cancers. Urol Clin North Am. 2000;27(1):83–102. https://doi.org/10.1016/s0094-0143(05)70237-8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Tian Z, Jin H, Xu J, Hua X, Yan H, Liufu H, Wang J, Li J, Zhu J, Huang H, Huang C. Decreased c-Myc mRNA stability through the MicroRNA 141–3p/AUF1 Axis Is Essential for p63α inhibition of Cyclin D1 Gene transcription and bladder most cancers cell tumorigenicity. Mol Cell Biol. 2018;38(21):e00273-e318. https://doi.org/10.1128/MCB.00273-18.PMID:30104251;PMCID:PMC6189456.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi NR, Choi WG, Kwon MJ, Woo JH, Kim BJ. [6]-Gingerol induces caspase-dependent apoptosis in bladder most cancers cells through MAPK and ROS Signaling. Int J Med Sci. 2022;19(7):1093–102. https://doi.org/10.7150/ijms.73077.PMID:35919815;PMCID:PMC9339411.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang L, Wu XH, Wang D, Luo CL, Chen LX. Bladder most cancers cell-derived exosomes inhibit tumor cell apoptosis and induce cell proliferation in vitro. Mol Med Rep. 2013;8(4):1272–8. https://doi.org/10.3892/mmr.2013.1634.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu CH, Silvers CR, Messing EM, Lee YF. Bladder most cancers extracellular vesicles drive tumorigenesis by inducing the unfolded protein response in endoplasmic reticulum of nonmalignant cells. J Biol Chem. 2019;294(9):3207–18. https://doi.org/10.1074/jbc.RA118.006682.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY, Mou XZ. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol. 2020;353: 104119. https://doi.org/10.1016/j.cellimm.2020.104119.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chou YS, Yang MH. Epithelial-mesenchymal transition-related components in strong tumor and hematological malignancy. J Chin Med Assoc. 2015;78(8):438–45. https://doi.org/10.1016/j.jcma.2015.05.002.

    Article 
    PubMed 

    Google Scholar
     

  • Beckham CJ, Olsen J, Yin PN, Wu CH, Ting HJ, Hagen FK, Scosyrev E, Messing EM, Lee YF. Bladder most cancers exosomes comprise EDIL-3/Del1 and facilitate most cancers development. J Urol. 2014;192(2):583–92. https://doi.org/10.1016/j.juro.2014.02.035.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franzen CA, Blackwell RH, Todorovic V, Greco KA, Foreman KE, Flanigan RC, Kuo PC, Gupta GN. Urothelial cells bear epithelial-to-mesenchymal transition after publicity to muscle invasive bladder most cancers exosomes. Oncogenesis. 2015;4(8): e163. https://doi.org/10.1038/oncsis.2015.21.PMID:26280654;PMCID:PMC4632072.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen C, Zheng H, Luo Y, Kong Y, An M, Li Y, He W, Gao B, Zhao Y, Huang H, Huang J, Lin T. SUMOylation promotes extracellular vesicle-mediated transmission of lncRNA ELNAT1 and lymph node metastasis in bladder most cancers. J Clin Make investments. 2021;131(8): e146431. https://doi.org/10.1172/JCI146431.PMID:33661764;PMCID:PMC8262506.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen C, Luo Y, He W, Zhao Y, Kong Y, Liu H, Zhong G, Li Y, Li J, Huang J, Chen R, Lin T. Exosomal lengthy noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder most cancers. J Clin Make investments. 2020;130(1):404–21. https://doi.org/10.1172/JCI130892.PMID:31593555;PMCID:PMC6934220.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tune Q, Yu H, Cheng Y, Han J, Li Okay, Zhuang J, Lv Q, Yang X, Yang H. Bladder cancer-derived exosomal KRT6B promotes invasion and metastasis by inducing EMT and regulating the immune microenvironment. J Transl Med. 2022;20(1):308. https://doi.org/10.1186/s12967-022-03508-2.PMID:35794606;PMCID:PMC9258227.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Milotti E, Fredrich T, Chignola R, Rieger H. Oxygen within the tumor microenvironment: mathematical and numerical modeling. Adv Exp Med Biol. 2020;1259:53–76. https://doi.org/10.1007/978-3-030-43093-1_4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burger MG, Grosso A, Briquez PS, Born GME, Lunger A, Schrenk F, Todorov A, Sacchi V, Hubbell JA, Schaefer DJ, Banfi A, Di Maggio N. Strong coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration. Acta Biomater. 2022;1(149):111–25. https://doi.org/10.1016/j.actbio.2022.07.014.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Peng X, Zhang C, Bai X, Li Y, Chen G, Guo H, He W, Zhou X, Gou X. Bladder cancer-derived small extracellular vesicles promote tumor angiogenesis by inducing HBP-related metabolic reprogramming and SerRS O-GlcNAcylation in endothelial cells. Adv Sci. 2022;9(30):e2202993. https://doi.org/10.1002/advs.202202993.

    Article 
    CAS 

    Google Scholar
     

  • Li X, Wei Z, Yu H, Xu Y, He W, Zhou X, Gou X. Secretory autophagy-induced bladder tumour-derived extracellular vesicle secretion promotes angiogenesis by activating the TPX2-mediated phosphorylation of the AURKA-PI3K-AKT axis. Most cancers Lett. 2021;28(523):10–28. https://doi.org/10.1016/j.canlet.2021.09.036.

    Article 
    CAS 

    Google Scholar
     

  • Rashid Okay, Ahmad A, Meerasa SS, Khan AQ, Wu X, Liang L, Cui Y, Liu T. Most cancers stem cell-derived exosome-induced metastatic most cancers: an orchestra throughout the tumor microenvironment. Biochimie. 2023. https://doi.org/10.1016/j.biochi.2023.03.014.

    Article 
    PubMed 

    Google Scholar
     

  • Luo G, Zhang Y, Wu Z, Zhang L, Liang C, Chen X. Exosomal LINC00355 derived from cancer-associated fibroblasts promotes bladder most cancers cell resistance to cisplatin by regulating miR-34b-5p/ABCB1 axis. Acta Biochim Biophys Sin. 2021;53(5):558–66. https://doi.org/10.1093/abbs/gmab023.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, Dicker DJ, Chimed-Orchir O, Dandona R, Dandona L, Fleming T, Forouzanfar MH, Hancock J, Hay RJ, Hunter-Merrill R, Huynh C, Hosgood HD, Johnson CO, Jonas JB, Khubchandani J, Kumar GA, Kutz M, Lan Q, Larson HJ, Liang X, Lim SS, Lopez AD, MacIntyre MF, Marczak L, Marquez N, Mokdad AH, Pinho C, Pourmalek F, Salomon JA, Sanabria JR, Sandar L, Sartorius B, Schwartz SM, Shackelford KA, Shibuya Okay, Stanaway J, Steiner C, Solar J, Takahashi Okay, Vollset SE, Vos T, Wagner JA, Wang H, Westerman R, Zeeb H, Zoeckler L, Abd-Allah F, Ahmed MB, Alabed S, Alam NK, Aldhahri SF, Alem G, Alemayohu MA, Ali R, Al-Raddadi R, Amare A, Amoako Y, Artaman A, Asayesh H, Atnafu N, Awasthi A, Saleem HB, Barac A, Bedi N, Bensenor I, Berhane A, Bernabé E, Betsu B, Binagwaho A, Boneya D, Campos-Nonato I, Castañeda-Orjuela C, Catalá-López F, Chiang P, Chibueze C, Chitheer A, Choi JY, Cowie B, Damtew S, Das Neves J, Dey S, Dharmaratne S, Dhillon P, Ding E, Driscoll T, Ekwueme D, Endries AY, Farvid M, Farzadfar F, Fernandes J, Fischer F, Hiwot TT, Gebru A, Gopalani S, Hailu A, Horino M, Horita N, Husseini A, Huybrechts I, Inoue M, Islami F, Jakovljevic M, James S, Javanbakht M, Jee SH, Kasaeian A, Kedir MS, Khader YS, Khang YH, Kim D, Leigh J, Linn S, Lunevicius R, El Razek HMA, Malekzadeh R, Malta DC, Marcenes W, Markos D, Melaku YA, Meles KG, Mendoza W, Mengiste DT, Meretoja TJ, Miller TR, Mohammad KA, Mohammadi A, Mohammed S, Moradi-Lakeh M, Nagel G, Nand D, Le Nguyen Q, Nolte S, Ogbo FA, Oladimeji KE, Oren E, Pa M, Park EK, Pereira DM, Plass D, Qorbani M, Radfar A, Rafay A, Rahman M, Rana SM, Søreide Okay, Satpathy M, Sawhney M, Sepanlou SG, Shaikh MA, She J, Shiue I, Shore HR, Shrime MG, So S, Soneji S, Stathopoulou V, Stroumpoulis Okay, Sufiyan MB, Sykes BL, Tabarés-Seisdedos R, Tadese F, Tedla BA, Tessema GA, Thakur JS, Tran BX, Ukwaja KN, Uzochukwu BSC, Vlassov VV, Weiderpass E, Wubshet Terefe M, Yebyo HG, Yimam HH, Yonemoto N, Younis MZ, Yu C, Zaidi Z, Zaki MES, Zenebe ZM, Murray CJL, Naghavi M. International, regional, and nationwide most cancers incidence, mortality, years of life misplaced, years lived with incapacity, and disability-adjusted life-years for 32 most cancers teams, 1990 to 2015: a scientific evaluation for the worldwide burden of illness examine. JAMA Oncol. 2017;3(4):524–48. https://doi.org/10.1001/jamaoncol.2016.5688.

    Article 
    PubMed 

    Google Scholar
     

  • Babjuk M, Burger M, Zigeuner R, Shariat SF, van Rhijn BW, Compérat E, Sylvester RJ, Kaasinen E, Böhle A, Palou Redorta J, Rouprêt M. EAU pointers on non-muscle-invasive urothelial carcinoma of the bladder: replace 2013. Eur Urol. 2013;64(4):639–53. https://doi.org/10.1016/j.eururo.2013.06.003.

    Article 
    PubMed 

    Google Scholar
     

  • Zhu CZ, Ting HN, Ng KH, Ong TA. A evaluate on the accuracy of bladder most cancers detection strategies. J Most cancers. 2019;10(17):4038–44. https://doi.org/10.7150/jca.28989.PMID:31417648;PMCID:PMC6692607.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gangoda L, Boukouris S, Liem M, Kalra H, Mathivanan S. Extracellular vesicles together with exosomes are mediators of sign transduction: are they protecting or pathogenic? Proteomics. 2015;15(2–3):260–71. https://doi.org/10.1002/pmic.201400234.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katsuda T, Kosaka N, Ochiya T. The roles of extracellular vesicles in most cancers biology: towards the event of novel most cancers biomarkers. Proteomics. 2014;14(4–5):412–25. https://doi.org/10.1002/pmic.201300389.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elsharkawi F, Elsabah M, Shabayek M, Khaled H. Urine and serum exosomes as novel biomarkers in detection of bladder most cancers. Asian Pac J Most cancers Prev. 2019;20(7):2219–24. https://doi.org/10.31557/APJCP.2019.20.7.2219.PMID:31350988;PMCID:PMC6745236.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li C, Hou X, Zhang P, Li J, Liu X, Wang Y, Guan Q, Zhou Y. Exosome-based tumor remedy: alternatives and challenges. Curr Drug Metab. 2020;21(5):339–51. https://doi.org/10.2174/1389200221666200515103354.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu T, Li T, Zheng Y, Xu X, Solar R, Zhan S, Guo X, Zhao Z, Zhu W, Feng B, Wei F, Jiang N, Wang J, Chen X, Fang F, Guo H, Yang R. Evaluating adipose-derived stem cell exosomes as miRNA drug supply programs for the therapy of bladder most cancers. Most cancers Med. 2022;11(19):3687–99. https://doi.org/10.1002/cam4.4745.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia Y, Ding X, Zhou L, Zhang L, Yang X. Mesenchymal stem cells-derived exosomal microRNA-139–5p restrains tumorigenesis in bladder most cancers by concentrating on PRC1. Oncogene. 2021;40(2):246–61. https://doi.org/10.1038/s41388-020-01486-7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee J, Park HS, Han SR, Kang YH, Mun JY, Shin DW, Oh HW, Cho YK, Lee MS, Park J. Alpha-2-macroglobulin as a novel diagnostic biomarker for human bladder most cancers in urinary extracellular vesicles. Entrance Oncol. 2022;13(12): 976407. https://doi.org/10.3389/fonc.2022.976407.PMID:36176383;PMCID:PMC9513419.

    Article 

    Google Scholar
     

  • Qiu T, Xue M, Li X, Li F, Liu S, Yao C, Chen W. Comparative analysis of lengthy non-coding RNA-based biomarkers within the urinary sediment and urinary exosomes for non-invasive prognosis of bladder most cancers. Mol Omics. 2022;18(10):938–47. https://doi.org/10.1039/d2mo00107a.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee J, McKinney KQ, Pavlopoulos AJ, Niu M, Kang JW, Oh JW, Kim KP, Hwang S. Altered proteome of extracellular vesicles derived from bladder most cancers sufferers urine. Mol Cells. 2018;41(3):179–87. https://doi.org/10.14348/molcells.2018.2110.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yazarlou F, Mowla SJ, Oskooei VK, Motevaseli E, Tooli LF, Afsharpad M, Nekoohesh L, Sanikhani NS, Ghafouri-Fard S, Modarressi MH. Urine exosome gene expression of cancer-testis antigens for prediction of bladder carcinoma. Most cancers Manag Res. 2018;5(10):5373–81. https://doi.org/10.2147/CMAR.S180389.PMID:30464633;PMCID:PMC6225912.

    Article 

    Google Scholar
     

  • Chen C, Shang A, Solar Z, Gao Y, Huang J, Ping Y, Chang W, Gu C, Solar J, Ji P, Yuan Y, Lu R, Li D. Urinary exosomal lengthy noncoding RNA TERC as a noninvasive diagnostic and prognostic biomarker for bladder urothelial carcinoma. J Immunol Res. 2022;25(2022):9038808. https://doi.org/10.1155/2022/9038808.PMID:35127956;PMCID:PMC8811540.

    Article 

    Google Scholar
     

  • Baumgart S, Meschkat P, Edelmann P, Heinzelmann J, Pryalukhin A, Bohle R, Heinzelbecker J, Stöckle M, Junker Okay. MicroRNAs in tumor samples and urinary extracellular vesicles as a putative diagnostic instrument for muscle-invasive bladder most cancers. J Most cancers Res Clin Oncol. 2019;145(11):2725–36. https://doi.org/10.1007/s00432-019-03035-6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang H, Du J, Jin B, Pang L, Duan N, Huang C, Hou J, Yu W, Hao H, Li H. Mixture of urine exosomal mRNAs and lncRNAs as novel diagnostic biomarkers for bladder most cancers. Entrance Oncol. 2021;27(11): 667212. https://doi.org/10.3389/fonc.2021.667212.PMID:33987102;PMCID:PMC8111292.

    Article 

    Google Scholar
     

  • Sarfi M, Abbastabar M, Khalili E. Elevated expression of urinary exosomal LnCRNA TUG-1 in early bladder most cancers. Gene Rep. 2020;165(12):2345–51. https://doi.org/10.1016/j.genrep.2020.101010.

    Article 
    CAS 

    Google Scholar
     

  • Zhang S, Du L, Wang L, Jiang X, Zhan Y, Li J, Yan Okay, Duan W, Zhao Y, Wang L, Wang Y, Shi Y, Wang C. Analysis of serum exosomal LncRNA-based biomarker panel for prognosis and recurrence prediction of bladder most cancers. J Cell Mol Med. 2019;23(2):1396–405. https://doi.org/10.1111/jcmm.14042.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sabo AA, Birolo G, Naccarati A, Dragomir MP, Aneli S, Allione A, Oderda M, Allasia M, Gontero P, Sacerdote C, Vineis P, Matullo G, Pardini B. Small non-coding RNA profiling in plasma extracellular vesicles of bladder most cancers sufferers by next-generation sequencing: expression ranges of miR-126-3p and piR-5936 improve with greater histologic grades. Cancers. 2020;12(6):1507. https://doi.org/10.3390/cancers12061507.PMID:32527011;PMCID:PMC7352804.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee DH, Yoon H, Park S, Kim JS, Ahn YH, Kwon Okay, Lee D, Kim KH. Urinary Exosomal and cell-free DNA detects somatic mutation and duplicate quantity alteration in urothelial carcinoma of bladder. Sci Rep. 2018;8(1):14707. https://doi.org/10.1038/s41598-018-32900-6.PMID:30279572;PMCID:PMC6168539.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou X, Kurywchak P, Wolf-Dennen Okay, Che SPY, Sulakhe D, D’Souza M, Xie B, Maltsev N, Gilliam TC, Wu CC, McAndrews KM, LeBleu VS, McConkey DJ, Volpert OV, Pretzsch SM, Czerniak BA, Dinney CP, Kalluri R. Distinctive somatic variants in DNA from urine exosomes of people with bladder most cancers. Mol Ther Strategies Clin Dev. 2021;29(22):360–76. https://doi.org/10.1016/j.omtm.2021.05.010.PMID:34514028;PMCID:PMC8408559.

    Article 

    Google Scholar
     

  • Park J, Kamerer RL, Marjanovic M, Sorrells JE, You S, Barkalifa R, Selting KA, Boppart SA. Label-free optical redox ratio from urinary extracellular vesicles as a screening biomarker for bladder most cancers. Am J Most cancers Res. 2022;12(5):2068–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Igami Okay, Uchiumi T, Shiota M, Ueda S, Tsukahara S, Akimoto M, Eto M, Kang D. Extracellular vesicles expressing CEACAM proteins within the urine of bladder most cancers sufferers. Most cancers Sci. 2022;113(9):3120–33. https://doi.org/10.1111/cas.15438.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El-Shal AS, Shalaby SM, Abouhashem SE, Elbary EHA, Azazy S, Rashad NM, Sarhan W. Urinary exosomal microRNA-96-5p and microRNA-183-5p expression as potential biomarkers of bladder most cancers. Mol Biol Rep. 2021;48(5):4361–71. https://doi.org/10.1007/s11033-021-06451-5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yazarlou F, Modarressi MH, Mowla SJ, Oskooei VK, Motevaseli E, Tooli LF, Nekoohesh L, Eghbali M, Ghafouri-Fard S, Afsharpad M. Urinary exosomal expression of lengthy non-coding RNAs as diagnostic marker in bladder most cancers. Most cancers Manag Res. 2018;26(10):6357–65. https://doi.org/10.2147/CMAR.S186108.PMID:30568497;PMCID:PMC6267766.

    Article 

    Google Scholar
     

  • Wen J, Yang T, Mallouk N, Zhang Y, Li H, Lambert C, Li G. Urinary exosomal CA9 mRNA as a novel liquid biopsy for molecular prognosis of bladder most cancers. Int J Nanomedicine. 2021;14(16):4805–11. https://doi.org/10.2147/IJN.S312322.PMID:34285483;PMCID:PMC8286733.

    Article 

    Google Scholar
     

  • Abbastabar M, Sarfi M, Golestani A, Karimi A, Pourmand G, Khalili E. Tumor-derived urinary exosomal lengthy non-coding RNAs as diagnostic biomarkers for bladder most cancers. EXCLI J. 2020;4(19):301–10. https://doi.org/10.17179/excli2019-1683.PMID:32231490;PMCID:PMC7104196.

    Article 

    Google Scholar
     

  • Silvers CR, Liu YR, Wu CH, Miyamoto H, Messing EM, Lee YF. Identification of extracellular vesicle-borne periostin as a characteristic of muscle-invasive bladder most cancers. Oncotarget. 2016;7(17):23335–45. https://doi.org/10.18632/oncotarget.8024.PMID:26981774;PMCID:PMC5029630.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang J, Yang Okay, Yuan W, Gao Z. Willpower of Serum Exosomal H19 as a noninvasive biomarker for bladder most cancers prognosis and prognosis. Med Sci Monit. 2018;21(24):9307–16. https://doi.org/10.12659/MSM.912018.PMID:30576305;PMCID:PMC6320644.

    Article 

    Google Scholar
     

  • Silvers CR, Miyamoto H, Messing EM, Netto GJ, Lee YF. Characterization of urinary extracellular vesicle proteins in muscle-invasive bladder most cancers. Oncotarget. 2017;8(53):91199–208. https://doi.org/10.18632/oncotarget.20043.PMID:29207636;PMCID:PMC5710916.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan Y, Du L, Wang L, Jiang X, Zhang S, Li J, Yan Okay, Duan W, Zhao Y, Wang L, Wang Y, Wang C. Expression signatures of exosomal lengthy non-coding RNAs in urine function novel non-invasive biomarkers for prognosis and recurrence prediction of bladder most cancers. Mol Most cancers. 2018;17(1):142. https://doi.org/10.1186/s12943-018-0893-y.PMID:30268126;PMCID:PMC6162963.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strømme O, Heck KA, Brede G, Lindholm HT, Otterlei M, Arum CJ. Differentially expressed extracellular vesicle-contained microRNAs earlier than and after transurethral resection of bladder tumors. Curr Points Mol Biol. 2021;43(1):286–300. https://doi.org/10.3390/cimb43010024.PMID:34199766;PMCID:PMC8929081.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu X, Showiheen SAA, Solar AR, Crawford R, Xiao Y, Mao X, Prasadam I. Exosomes extraction and identification. Strategies Mol Biol. 2019;2054:81–91. https://doi.org/10.1007/978-1-4939-9769-5_4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei D, Zhan W, Gao Y, Huang L, Gong R, Wang W, Zhang R, Wu Y, Gao S, Kang T. RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res. 2021;31(2):157–77. https://doi.org/10.1038/s41422-020-00409-1.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kimiz-Gebologlu I, Oncel SS. Exosomes: large-scale manufacturing, isolation, drug loading effectivity, and biodistribution and uptake. J Management Rel. 2022;347:533–43. https://doi.org/10.1016/j.jconrel.2022.05.027.

    Article 
    CAS 

    Google Scholar
     

  • Ashrafizadeh M, Zarrabi A, Samarghandian S, Najafi M. PTEN: What we all know of the operate and regulation of this onco-suppressor consider bladder most cancers? Eur J Pharmacol. 2020;15(881): 173226. https://doi.org/10.1016/j.ejphar.2020.173226.

    Article 
    CAS 

    Google Scholar
     

  • Xu T, Rao T, Yu WM, Ning JZ, Yu X, Zhu SM, Yang Okay, Bai T, Cheng F. Upregulation of NFKBIZ impacts bladder most cancers development through the PTEN/PI3K/Akt signaling pathway. Int J Mol Med. 2021;47(6):109. https://doi.org/10.3892/ijmm.2021.4942.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong XL, Wang L, Yan X, Yang XK, Xiu H, Zhao M, Wang XN, Liu JX. MiR-20a acted as a ceRNA of lncRNA PTENPL and promoted bladder most cancers cell proliferation and migration by regulating PDCD4. Eur Rev Med Pharmacol Sci. 2020;24(6):2955–64. https://doi.org/10.26355/eurrev_202003_20660.

    Article 
    PubMed 

    Google Scholar
     

  • Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Akbari DN. A evaluate on the position of PTENP1 in human issues with an especial give attention to tumor suppressor position of this lncRNA. Most cancers Cell Int. 2022;22(1):207. https://doi.org/10.1186/s12935-022-02625-8.PMID:35655204;PMCID:PMC9161594.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kovalenko TF, Morozova KV, Pavlyukov MS, Anufrieva KS, Bobrov MY, Gamisoniya AM, Ozolinya LA, Dobrokhotova YE, Shakhparonov MI, Patrushev LI. Methylation of the PTENP1 pseudogene as potential epigenetic marker of age-related adjustments in human endometrium. PLoS ONE. 2021;16(1): e0243093. https://doi.org/10.1371/journal.pone.0243093.PMID:33481830;PMCID:PMC7822536.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qian YY, Li Okay, Liu QY, Liu ZS. Lengthy non-coding RNA PTENP1 interacts with miR-193a-3p to suppress cell migration and invasion by the PTEN pathway in hepatocellular carcinoma. Oncotarget. 2017;8(64):107859–69. https://doi.org/10.18632/oncotarget.22305.PMID:29296207;PMCID:PMC5746109.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiong T, Li J, Chen F, Zhang F. PCAT-1: a novel oncogenic lengthy non-coding RNA in human cancers. Int J Biol Sci. 2019;15(4):847–56. https://doi.org/10.7150/ijbs.30970.PMID:30906215;PMCID:PMC6429018.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goyal B, Yadav SRM, Awasthee N, Gupta S, Kunnumakkara AB, Gupta SC. Diagnostic, prognostic, and therapeutic significance of lengthy non-coding RNA MALAT1 in most cancers. Biochim Biophys Acta Rev Most cancers. 2021;1875(2): 188502. https://doi.org/10.1016/j.bbcan.2021.188502.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao X, Cao H, Yu Q, Ou X, Deng R, Huang J. NEAT1/MALAT1/XIST/PKD–Hsa-Mir-101-3p–DLGAP5 axis as a novel diagnostic and prognostic biomarker related to immune cell infiltration in bladder most cancers. Entrance Genet. 2022;8(13): 892535. https://doi.org/10.3389/fgene.2022.892535.PMID:35873473;PMCID:PMC9305813.

    Article 

    Google Scholar
     

  • Zhou LJ, Yang DW, Ou LN, Guo XR, Wu BL. Circulating expression degree of LncRNA Malat1 in diabetic kidney illness sufferers and its scientific significance. J Diabetes Res. 2020;1(2020):4729019. https://doi.org/10.1155/2020/4729019.PMID:32832561;PMCID:PMC7421584.

    Article 

    Google Scholar
     

  • Gong X, Zhu Y, Chang H, Li Y, Ma F. Lengthy noncoding RNA MALAT1 promotes cardiomyocyte apoptosis after myocardial infarction through concentrating on miR-144-3p. 2019. Biosci Rep. https://doi.org/10.1042/BSR20191103.

  • Baumgart S, Hölters S, Ohlmann CH, Bohle R, Stöckle M, Ostenfeld MS, Dyrskjøt L, Junker Okay, Heinzelmann J. Exosomes of invasive urothelial carcinoma cells are characterised by a particular miRNA expression signature. Oncotarget. 2017;8(35):58278–91. https://doi.org/10.18632/oncotarget.17619.PMID:28938555;PMCID:PMC5601651.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hiltbrunner S, Mints M, Eldh M, Rosenblatt R, Holmström B, Alamdari F, Johansson M, Veerman RE, Winqvist O, Sherif A, Gabrielsson S. Urinary exosomes from bladder most cancers sufferers present a residual most cancers phenotype regardless of full pathological downstaging. Sci Rep. 2020;10(1):5960. https://doi.org/10.1038/s41598-020-62753-x.PMID:32249794;PMCID:PMC7136268.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eldh M, Mints M, Hiltbrunner S, Ladjevardi S, Alamdari F, Johansson M, Jakubczyk T, Veerman RE, Winqvist O, Sherif A, Gabrielsson S. Proteomic profiling of tissue exosomes signifies steady launch of malignant exosomes in urinary bladder most cancers sufferers, even with pathologically undetectable tumour. Cancers. 2021;13(13):3242. https://doi.org/10.3390/cancers13133242.PMID:34209558;PMCID:PMC8267924.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jingushi Okay, Kawashima A, Saito T, Kanazawa T, Motooka D, Kimura T, Mita M, Yamamoto A, Uemura T, Yamamichi G, Okada Okay, Tomiyama E, Koh Y, Matsushita M, Kato T, Hatano Okay, Uemura M, Tsujikawa Okay, Wada H, Nonomura N. Circulating extracellular vesicles carrying Firmicutes reflective of the native immune standing might predict scientific response to pembrolizumab in urothelial carcinoma sufferers. Most cancers Immunol Immunother. 2022;71(12):2999–3011. https://doi.org/10.1007/s00262-022-03213-5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo H, Xu C, Ge B, Wang T. CASC1 expression in bladder most cancers is regulated by exosomal miRNA-150: a complete pan-cancer and bioinformatics examine. Comput Math Strategies Med. 2022;5(2022):8100325. https://doi.org/10.1155/2022/8100325.PMID:35836922;PMCID:PMC9276518.

    Article 

    Google Scholar
     

  • [ad_2]

    Leave a comment